1r81: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
<StructureSection load='1r81' size='340' side='right'caption='[[1r81]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
<StructureSection load='1r81' size='340' side='right'caption='[[1r81]], [[Resolution|resolution]] 1.75&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1r81]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1R81 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1R81 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1r81]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1R81 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1R81 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AIG:4-AMINO-2-HEXYLOXY-6-HYDROXYMETHYL-TETRAHYDRO-PYRAN-3,5-DIOL'>AIG</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=UD2:URIDINE-DIPHOSPHATE-N-ACETYLGALACTOSAMINE'>UD2</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1r7t|1r7t]], [[1r7u|1r7u]], [[1r7v|1r7v]], [[1r7x|1r7x]], [[1r7y|1r7y]], [[1r80|1r80]], [[1r82|1r82]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AIG:4-AMINO-2-HEXYLOXY-6-HYDROXYMETHYL-TETRAHYDRO-PYRAN-3,5-DIOL'>AIG</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=UD2:URIDINE-DIPHOSPHATE-N-ACETYLGALACTOSAMINE'>UD2</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glycoprotein-fucosylgalactoside_alpha-N-acetylgalactosaminyltransferase Glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.40 2.4.1.40] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1r81 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1r81 OCA], [https://pdbe.org/1r81 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1r81 RCSB], [https://www.ebi.ac.uk/pdbsum/1r81 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1r81 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1r81 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1r81 OCA], [http://pdbe.org/1r81 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1r81 RCSB], [http://www.ebi.ac.uk/pdbsum/1r81 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1r81 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/BGAT_HUMAN BGAT_HUMAN]] This protein is the basis of the ABO blood group system. The histo-blood group ABO involves three carbohydrate antigens: A, B, and H. A, B, and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of UDP-GalNAc) or to the B antigen (by addition of UDP-Gal), whereas O individuals lack such activity.  
[https://www.uniprot.org/uniprot/BGAT_HUMAN BGAT_HUMAN] This protein is the basis of the ABO blood group system. The histo-blood group ABO involves three carbohydrate antigens: A, B, and H. A, B, and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of UDP-GalNAc) or to the B antigen (by addition of UDP-Gal), whereas O individuals lack such activity.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 37: Line 36:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase]]
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Borisova, S N]]
[[Category: Borisova SN]]
[[Category: Cai, Y]]
[[Category: Cai Y]]
[[Category: Evans, S V]]
[[Category: Evans SV]]
[[Category: Leinala, E K]]
[[Category: Leinala EK]]
[[Category: Nguyen, H P]]
[[Category: Nguyen HP]]
[[Category: Palcic, M M]]
[[Category: Palcic MM]]
[[Category: Seto, N O.L]]
[[Category: Seto NOL]]
[[Category: Blood group antigen]]
[[Category: Glycoprotein]]
[[Category: Signal-anchor]]
[[Category: Transferase]]
[[Category: Transmembrane]]

Latest revision as of 21:15, 29 May 2024

Glycosyltransferase A in complex with 3-amino-acceptor analog inhibitor and uridine diphosphate-N-acetyl-galactoseGlycosyltransferase A in complex with 3-amino-acceptor analog inhibitor and uridine diphosphate-N-acetyl-galactose

Structural highlights

1r81 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.75Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BGAT_HUMAN This protein is the basis of the ABO blood group system. The histo-blood group ABO involves three carbohydrate antigens: A, B, and H. A, B, and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of UDP-GalNAc) or to the B antigen (by addition of UDP-Gal), whereas O individuals lack such activity.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.

The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases.,Nguyen HP, Seto NO, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV J Biol Chem. 2003 Dec 5;278(49):49191-5. Epub 2003 Sep 11. PMID:12972418[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nguyen HP, Seto NO, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV. The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases. J Biol Chem. 2003 Dec 5;278(49):49191-5. Epub 2003 Sep 11. PMID:12972418 doi:http://dx.doi.org/10.1074/jbc.M308770200

1r81, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA