1lxg: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Solution structure of alpha-cobratoxin complexed with a cognate peptide (structure ensemble)==
==Solution structure of alpha-cobratoxin complexed with a cognate peptide (structure ensemble)==
<StructureSection load='1lxg' size='340' side='right'caption='[[1lxg]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
<StructureSection load='1lxg' size='340' side='right'caption='[[1lxg]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1lxg]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Naja_kaouthia Naja kaouthia] and [http://en.wikipedia.org/wiki/Pacific_electric_ray Pacific electric ray]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1LXG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1LXG FirstGlance]. <br>
<table><tr><td colspan='2'>[[1lxg]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Naja_kaouthia Naja kaouthia] and [https://en.wikipedia.org/wiki/Tetronarce_californica Tetronarce californica]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1LXG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1LXG FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=HSL:HOMOSERINE+LACTONE'>HSL</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1lxh|1lxh]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HSL:HOMOSERINE+LACTONE'>HSL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1lxg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lxg OCA], [http://pdbe.org/1lxg PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1lxg RCSB], [http://www.ebi.ac.uk/pdbsum/1lxg PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1lxg ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1lxg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1lxg OCA], [https://pdbe.org/1lxg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1lxg RCSB], [https://www.ebi.ac.uk/pdbsum/1lxg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1lxg ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/NXL1_NAJKA NXL1_NAJKA]] The monomeric form binds with high affinity to muscular, Torpedo (muscle-type), and neuronal alpha-7 nicotinic acetylcholine receptors (nAChR). Has no effect on alpha-3/beta-2 nAChR. Causes paralysis by preventing acetylcholine binding to the nAChR. Does not show any blockade of the nicotine-evoked release of dopamine and does not affect ACh release. In mice lung cancer, causes reduction of tumor growth.<ref>PMID:18381281</ref> <ref>PMID:6771288</ref> <ref>PMID:6553056</ref> <ref>PMID:2086254</ref> <ref>PMID:9053737</ref> <ref>PMID:9305882</ref> <ref>PMID:9840221</ref> <ref>PMID:10574958</ref> <ref>PMID:18067132</ref>  The homodimeric form binds with low affinity to Torpedo (muscle-type) and alpha-7 nAChRs, whereas it acquires the capacity to block alpha-3/beta-2 nAChRs.<ref>PMID:18381281</ref> <ref>PMID:6771288</ref> <ref>PMID:6553056</ref> <ref>PMID:2086254</ref> <ref>PMID:9053737</ref> <ref>PMID:9305882</ref> <ref>PMID:9840221</ref> <ref>PMID:10574958</ref> <ref>PMID:18067132</ref> [[http://www.uniprot.org/uniprot/ACHA_TORCA ACHA_TORCA]] After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
[https://www.uniprot.org/uniprot/3L21_NAJKA 3L21_NAJKA] Monomer: binds with high affinity to muscular (alpha-1-beta-1-gamma-delta/CHRNA1-CHRNB1-CHRNG-CHRND) nAChR (tested on Torpedo californica, Kd=0.2-4.5 nM) and neuronal alpha-7/CHRNA7 nicotinic acetylcholine receptors (Kd=13-105 nM) (PubMed:18381281, PubMed:9305882, PubMed:22223648). Also inhibits GABA(A) channels (PubMed:26221036). Heteropentamer targets studied are composed of alpha-1-beta-3-gamma-2 (GABRA1-GABRB3-GABRG2) subunits (IC(50)=236 nM), alpha-1-beta-2-gamma-2 (GABRA1-GABRB2-GABRG2) subunits (IC(50)=469 nM), alpha-2-beta-2-gamma-2 (GABRA2-GABRB2-GABRG2) subunits (IC(50)=485 nM), alpha-5-beta-3-gamma-2 (GABRA5-GABRB3-GABRG2) subunits (IC(50)=635 nM), and alpha-2-beta-3-gamma-2 (GABRA2-GABRB3-GABRG2) subunits (IC(50)=1099 nM) (activated by 10 uM GABA) (PubMed:26221036).<ref>PMID:18381281</ref> <ref>PMID:22223648</ref> <ref>PMID:26221036</ref> <ref>PMID:30025921</ref>   Homodimer: binds with high affinity (but lower than the monomeric form) to muscular (IC(50)=9.7 nM) and with low affinity to neuronal alpha-7/CHRNA7 nAChRs (IC(50)=1370 nM) (PubMed:22223648). However, it acquires (compared to the monomeric form) the capacity to block alpha-3/beta-2 (CHRNA3/CHRNB2) nAChRs (PubMed:18381281).<ref>PMID:18381281</ref> <ref>PMID:22223648</ref>   Heterodimer with cytotoxin 3 (AC P01446): is slightly more active than the homodimer in inhibiting alpha-7/CHRNA7 nAChR and is considerably more active in blocking the alpha-3-beta-2/CHRNA3-CHRNB2 nAChR.<ref>PMID:22223648</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lxg ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1lxg ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The alpha18-mer peptide, spanning residues 181-198 of the Torpedo nicotinic acetylcholine receptor alpha1 subunit, contains key binding determinants for agonists and competitive antagonists. To investigate whether the alpha18-mer can bind other alpha-neurotoxins besides alpha-bungarotoxin, we designed a two-dimensional (1)H-(15)N heteronuclear single quantum correlation experiment to screen four related neurotoxins for their binding ability to the peptide. Of the four toxins tested (erabutoxin a, erabutoxin b, LSIII, and alpha-cobratoxin), only alpha-cobratoxin binds the alpha18-mer to form a 1:1 complex. The NMR solution structure of the alpha-cobratoxin.alpha18-mer complex was determined with a backbone root mean square deviation of 1.46 A. In the structure, alpha-cobratoxin contacts the alpha18-mer at the tips of loop I and II and through C-terminal cationic residues. The contact zone derived from the intermolecular nuclear Overhauser effects is in agreement with recent biochemical data. Furthermore, the structural models support the involvement of cation-pi interactions in stabilizing the complex. In addition, the binding screen results suggest that C-terminal cationic residues of alpha-bungarotoxin and alpha-cobratoxin contribute significantly to binding of the alpha18-mer. Finally, we present a structural model for nicotinic acetylcholine receptor-alpha-cobratoxin interaction by superimposing the alpha-cobratoxin.alpha18-mer complex onto the crystal structure of the acetylcholine-binding protein (Protein Data Bank code ).
NMR-based binding screen and structural analysis of the complex formed between alpha-cobratoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica.,Zeng H, Hawrot E J Biol Chem. 2002 Oct 4;277(40):37439-45. Epub 2002 Jul 19. PMID:12133834<ref>PMID:12133834</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1lxg" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
Line 35: Line 26:
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Naja kaouthia]]
[[Category: Naja kaouthia]]
[[Category: Pacific electric ray]]
[[Category: Tetronarce californica]]
[[Category: Hawrot, E]]
[[Category: Hawrot E]]
[[Category: Zeng, H]]
[[Category: Zeng H]]
[[Category: Alpha-cobratoxin]]
[[Category: Nicotinic acetylcholine receptor]]
[[Category: Protein-protein interaction]]
[[Category: Toxin]]

Latest revision as of 11:29, 10 April 2024

Solution structure of alpha-cobratoxin complexed with a cognate peptide (structure ensemble)Solution structure of alpha-cobratoxin complexed with a cognate peptide (structure ensemble)

Structural highlights

1lxg is a 2 chain structure with sequence from Naja kaouthia and Tetronarce californica. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

3L21_NAJKA Monomer: binds with high affinity to muscular (alpha-1-beta-1-gamma-delta/CHRNA1-CHRNB1-CHRNG-CHRND) nAChR (tested on Torpedo californica, Kd=0.2-4.5 nM) and neuronal alpha-7/CHRNA7 nicotinic acetylcholine receptors (Kd=13-105 nM) (PubMed:18381281, PubMed:9305882, PubMed:22223648). Also inhibits GABA(A) channels (PubMed:26221036). Heteropentamer targets studied are composed of alpha-1-beta-3-gamma-2 (GABRA1-GABRB3-GABRG2) subunits (IC(50)=236 nM), alpha-1-beta-2-gamma-2 (GABRA1-GABRB2-GABRG2) subunits (IC(50)=469 nM), alpha-2-beta-2-gamma-2 (GABRA2-GABRB2-GABRG2) subunits (IC(50)=485 nM), alpha-5-beta-3-gamma-2 (GABRA5-GABRB3-GABRG2) subunits (IC(50)=635 nM), and alpha-2-beta-3-gamma-2 (GABRA2-GABRB3-GABRG2) subunits (IC(50)=1099 nM) (activated by 10 uM GABA) (PubMed:26221036).[1] [2] [3] [4] Homodimer: binds with high affinity (but lower than the monomeric form) to muscular (IC(50)=9.7 nM) and with low affinity to neuronal alpha-7/CHRNA7 nAChRs (IC(50)=1370 nM) (PubMed:22223648). However, it acquires (compared to the monomeric form) the capacity to block alpha-3/beta-2 (CHRNA3/CHRNB2) nAChRs (PubMed:18381281).[5] [6] Heterodimer with cytotoxin 3 (AC P01446): is slightly more active than the homodimer in inhibiting alpha-7/CHRNA7 nAChR and is considerably more active in blocking the alpha-3-beta-2/CHRNA3-CHRNB2 nAChR.[7]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Osipov AV, Kasheverov IE, Makarova YV, Starkov VG, Vorontsova OV, Ziganshin RKh, Andreeva TV, Serebryakova MV, Benoit A, Hogg RC, Bertrand D, Tsetlin VI, Utkin YN. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification. J Biol Chem. 2008 May 23;283(21):14571-80. Epub 2008 Apr 1. PMID:18381281 doi:http://dx.doi.org/M802085200
  2. Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric alpha-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem. 2012 Feb 24;287(9):6725-34. Epub 2012 Jan 5. PMID:22223648 doi:10.1074/jbc.M111.322313
  3. Kudryavtsev DS, Shelukhina IV, Son LV, Ojomoko LO, Kryukova EV, Lyukmanova EN, Zhmak MN, Dolgikh DA, Ivanov IA, Kasheverov IE, Starkov VG, Ramerstorfer J, Sieghart W, Tsetlin VI, Utkin YN. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J Biol Chem. 2015 Sep 11;290(37):22747-58. PMID:26221036 doi:10.1074/jbc.M115.648824
  4. Yu J, Zhu X, Zhang L, Kudryavtsev D, Kasheverov I, Lei Y, Zhangsun D, Tsetlin V, Luo S. Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology. 2018 Sep 1;139:226-237. PMID:30025921 doi:10.1016/j.neuropharm.2018.07.019
  5. Osipov AV, Kasheverov IE, Makarova YV, Starkov VG, Vorontsova OV, Ziganshin RKh, Andreeva TV, Serebryakova MV, Benoit A, Hogg RC, Bertrand D, Tsetlin VI, Utkin YN. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification. J Biol Chem. 2008 May 23;283(21):14571-80. Epub 2008 Apr 1. PMID:18381281 doi:http://dx.doi.org/M802085200
  6. Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric alpha-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem. 2012 Feb 24;287(9):6725-34. Epub 2012 Jan 5. PMID:22223648 doi:10.1074/jbc.M111.322313
  7. Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric alpha-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem. 2012 Feb 24;287(9):6725-34. Epub 2012 Jan 5. PMID:22223648 doi:10.1074/jbc.M111.322313
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA