6t3n: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "6t3n" [edit=sysop:move=sysop]
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 6t3n is ON HOLD
==Structure of Oceanobacillus iheyensis group II intron G-mutant (C289G/C358G/G385C) in the presence of Na+, Mg2+ and 5'-exon==
<StructureSection load='6t3n' size='340' side='right'caption='[[6t3n]], [[Resolution|resolution]] 3.22&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6t3n]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Oceanobacillus_iheyensis_HTE831 Oceanobacillus iheyensis HTE831]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6T3N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6T3N FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.22&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6t3n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6t3n OCA], [https://pdbe.org/6t3n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6t3n RCSB], [https://www.ebi.ac.uk/pdbsum/6t3n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6t3n ProSAT]</span></td></tr>
</table>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5'-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy.


Authors:  
Visualizing group II intron dynamics between the first and second steps of splicing.,Manigrasso J, Chillon I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M Nat Commun. 2020 Jun 5;11(1):2837. doi: 10.1038/s41467-020-16741-4. PMID:32503992<ref>PMID:32503992</ref>


Description:  
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
<div class="pdbe-citations 6t3n" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[Ribozyme 3D structures|Ribozyme 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Oceanobacillus iheyensis HTE831]]
[[Category: Marcia M]]
[[Category: Pyle AM]]

Latest revision as of 15:54, 24 January 2024

Structure of Oceanobacillus iheyensis group II intron G-mutant (C289G/C358G/G385C) in the presence of Na+, Mg2+ and 5'-exonStructure of Oceanobacillus iheyensis group II intron G-mutant (C289G/C358G/G385C) in the presence of Na+, Mg2+ and 5'-exon

Structural highlights

6t3n is a 1 chain structure with sequence from Oceanobacillus iheyensis HTE831. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.22Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5'-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy.

Visualizing group II intron dynamics between the first and second steps of splicing.,Manigrasso J, Chillon I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M Nat Commun. 2020 Jun 5;11(1):2837. doi: 10.1038/s41467-020-16741-4. PMID:32503992[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Manigrasso J, Chillon I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M. Visualizing group II intron dynamics between the first and second steps of splicing. Nat Commun. 2020 Jun 5;11(1):2837. doi: 10.1038/s41467-020-16741-4. PMID:32503992 doi:http://dx.doi.org/10.1038/s41467-020-16741-4

6t3n, resolution 3.22Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA