1a36: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='1a36' size='340' side='right'caption='[[1a36]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
<StructureSection load='1a36' size='340' side='right'caption='[[1a36]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1a36]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. The January 2006 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Topoisomerases''  by David S. Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2006_1 10.2210/rcsb_pdb/mom_2006_1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A36 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A36 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1a36]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. The January 2006 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Topoisomerases''  by David S. Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2006_1 10.2210/rcsb_pdb/mom_2006_1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A36 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A36 FirstGlance]. <br>
</td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_topoisomerase DNA topoisomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.99.1.2 5.99.1.2] </span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1a36 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a36 OCA], [http://pdbe.org/1a36 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1a36 RCSB], [http://www.ebi.ac.uk/pdbsum/1a36 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1a36 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a36 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a36 OCA], [https://pdbe.org/1a36 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a36 RCSB], [https://www.ebi.ac.uk/pdbsum/1a36 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a36 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN]] Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98.  
[https://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN] Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN]] Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells.<ref>PMID:2833744</ref> <ref>PMID:19168442</ref> <ref>PMID:14594810</ref> <ref>PMID:16033260</ref>
[https://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN] Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells.<ref>PMID:2833744</ref> <ref>PMID:19168442</ref> <ref>PMID:14594810</ref> <ref>PMID:16033260</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 21:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a36 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a36 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."
A model for the mechanism of human topoisomerase I.,Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJ Science. 1998 Mar 6;279(5356):1534-41. PMID:9488652<ref>PMID:9488652</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1a36" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Topoisomerase|Topoisomerase]]
*[[Topoisomerase 3D structures|Topoisomerase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: DNA topoisomerase]]
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: RCSB PDB Molecule of the Month]]
[[Category: Topoisomerases]]
[[Category: Topoisomerases]]
[[Category: Champoux, J J]]
[[Category: Champoux JJ]]
[[Category: Hol, W G.J]]
[[Category: Hol WGJ]]
[[Category: Qiu, X]]
[[Category: Qiu X]]
[[Category: Redinbo, M R]]
[[Category: Redinbo MR]]
[[Category: Stewart, L]]
[[Category: Stewart L]]
[[Category: Dna]]
[[Category: Isomerase-dna complex]]
[[Category: Topoisomerase i]]

Latest revision as of 09:27, 7 February 2024

TOPOISOMERASE I/DNA COMPLEXTOPOISOMERASE I/DNA COMPLEX

Structural highlights

1a36 is a 3 chain structure with sequence from Homo sapiens. The January 2006 RCSB PDB Molecule of the Month feature on Topoisomerases by David S. Goodsell is 10.2210/rcsb_pdb/mom_2006_1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TOP1_HUMAN Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98.

Function

TOP1_HUMAN Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells.[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. D'Arpa P, Machlin PS, Ratrie H 3rd, Rothfield NF, Cleveland DW, Earnshaw WC. cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7-kDa carboxyl-terminal fragment. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2543-7. PMID:2833744
  2. Eisenreich A, Bogdanov VY, Zakrzewicz A, Pries A, Antoniak S, Poller W, Schultheiss HP, Rauch U. Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells. Circ Res. 2009 Mar 13;104(5):589-99. doi: 10.1161/CIRCRESAHA.108.183905. Epub, 2009 Jan 22. PMID:19168442 doi:10.1161/CIRCRESAHA.108.183905
  3. Interthal H, Quigley PM, Hol WG, Champoux JJ. The role of lysine 532 in the catalytic mechanism of human topoisomerase I. J Biol Chem. 2004 Jan 23;279(4):2984-92. Epub 2003 Oct 31. PMID:14594810 doi:10.1074/jbc.M309959200
  4. Ioanoviciu A, Antony S, Pommier Y, Staker BL, Stewart L, Cushman M. Synthesis and mechanism of action studies of a series of norindenoisoquinoline topoisomerase I poisons reveal an inhibitor with a flipped orientation in the ternary DNA-enzyme-inhibitor complex as determined by X-ray crystallographic analysis. J Med Chem. 2005 Jul 28;48(15):4803-14. PMID:16033260 doi:10.1021/jm050076b

1a36, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA