6k5r: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Complex of SUMO2 with Phosphorylated viral SIM IE2==
==Complex of SUMO2 with Phosphorylated viral SIM IE2==
<StructureSection load='6k5r' size='340' side='right'caption='[[6k5r]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='6k5r' size='340' side='right'caption='[[6k5r]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6k5r]] is a 2 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6K5R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6K5R FirstGlance]. <br>
<table><tr><td colspan='2'>[[6k5r]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Human_herpesvirus_5_strain_AD169 Human herpesvirus 5 strain AD169]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6K5R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6K5R FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 20 models</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6k5r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6k5r OCA], [http://pdbe.org/6k5r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6k5r RCSB], [http://www.ebi.ac.uk/pdbsum/6k5r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6k5r ProSAT]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6k5r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6k5r OCA], [https://pdbe.org/6k5r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6k5r RCSB], [https://www.ebi.ac.uk/pdbsum/6k5r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6k5r ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SUMO3_HUMAN SUMO3_HUMAN]] Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Covalent attachment to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4.<ref>PMID:11451954</ref> <ref>PMID:18538659</ref> [[http://www.uniprot.org/uniprot/VIE2_HCMVA VIE2_HCMVA]] Stimulates viral early and late gene expression and thus play a crucial role in the regulation of productive infection. In addition, activates quiescent cells to reenter the cell cycle and upregulates several E2F-responsive genes, which are responsible for pushing the cell into S phase. In S-phase, inhibits cellular DNA synthesis and blocks further cell cycle progression.<ref>PMID:10516036</ref> <ref>PMID:19812159</ref>
[https://www.uniprot.org/uniprot/SUMO3_HUMAN SUMO3_HUMAN] Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Covalent attachment to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4.<ref>PMID:11451954</ref> <ref>PMID:18538659</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.
 
Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2.,Tripathi V, Chatterjee KS, Das R J Biol Chem. 2019 Oct 4;294(40):14546-14561. doi: 10.1074/jbc.RA119.009601. Epub , 2019 Aug 1. PMID:31371453<ref>PMID:31371453</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6k5r" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[SUMO 3D Structures|SUMO 3D Structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Human herpesvirus 5 strain AD169]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Chatterjee, K S]]
[[Category: Chatterjee KS]]
[[Category: Das, R]]
[[Category: Das R]]
[[Category: Complex]]
[[Category: Protein binding-transcription complex]]

Latest revision as of 15:48, 6 November 2024

Complex of SUMO2 with Phosphorylated viral SIM IE2Complex of SUMO2 with Phosphorylated viral SIM IE2

Structural highlights

6k5r is a 2 chain structure with sequence from Homo sapiens and Human herpesvirus 5 strain AD169. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 20 models
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SUMO3_HUMAN Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Covalent attachment to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4.[1] [2]

Publication Abstract from PubMed

Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.

Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2.,Tripathi V, Chatterjee KS, Das R J Biol Chem. 2019 Oct 4;294(40):14546-14561. doi: 10.1074/jbc.RA119.009601. Epub , 2019 Aug 1. PMID:31371453[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 2001 Sep 21;276(38):35368-74. Epub 2001 Jul 12. PMID:11451954 doi:10.1074/jbc.M104214200
  2. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell. 2008 Jun 6;30(5):610-9. doi: 10.1016/j.molcel.2008.03.021. PMID:18538659 doi:10.1016/j.molcel.2008.03.021
  3. Tripathi V, Chatterjee KS, Das R. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. J Biol Chem. 2019 Oct 4;294(40):14546-14561. doi: 10.1074/jbc.RA119.009601. Epub , 2019 Aug 1. PMID:31371453 doi:http://dx.doi.org/10.1074/jbc.RA119.009601
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA