3zr4: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
<StructureSection load='3zr4' size='340' side='right'caption='[[3zr4]], [[Resolution|resolution]] 2.41Å' scene=''> | <StructureSection load='3zr4' size='340' side='right'caption='[[3zr4]], [[Resolution|resolution]] 2.41Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3zr4]] is a 6 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3zr4]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermotoga_maritima Thermotoga maritima]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZR4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZR4 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.41Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GLN:GLUTAMINE'>GLN</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3zr4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zr4 OCA], [https://pdbe.org/3zr4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3zr4 RCSB], [https://www.ebi.ac.uk/pdbsum/3zr4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3zr4 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/HIS6_THEMA HIS6_THEMA] IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit.[HAMAP-Rule:MF_01013] | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 19: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 3zr4" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 3zr4" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[IGPS 3D structures|IGPS 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Haeger | [[Category: Thermotoga maritima]] | ||
[[Category: Kuper | [[Category: Haeger MC]] | ||
[[Category: Marquardt | [[Category: Kuper J]] | ||
[[Category: Mohrlueder | [[Category: Marquardt S]] | ||
[[Category: Sterner | [[Category: Mohrlueder J]] | ||
[[Category: Vega | [[Category: Sterner R]] | ||
[[Category: Wilmanns | [[Category: Vega MC]] | ||
[[Category: Wilmanns M]] |
Latest revision as of 14:10, 20 December 2023
STRUCTURAL EVIDENCE FOR AMMONIA TUNNELING ACROSS THE (BETA-ALPHA)8 BARREL OF THE IMIDAZOLE GLYCEROL PHOSPHATE SYNTHASE BIENZYME COMPLEXSTRUCTURAL EVIDENCE FOR AMMONIA TUNNELING ACROSS THE (BETA-ALPHA)8 BARREL OF THE IMIDAZOLE GLYCEROL PHOSPHATE SYNTHASE BIENZYME COMPLEX
Structural highlights
FunctionHIS6_THEMA IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit.[HAMAP-Rule:MF_01013] Publication Abstract from PubMedNitrogen is incorporated into various metabolites by multifunctional glutamine amidotransferases via reactive ammonia generated by glutaminase hydrolysis of glutamine. Although this process is generally tightly regulated by subsequent synthase activity, little is known about how the glutaminase is inhibited in the absence of an activating signal. Here, we use imidazoleglycerolphosphate synthase as a model to investigate the mechanism of glutaminase regulation. A structure of the bienzyme-glutamine complex reveals that the glutaminase active site is in a catalysis-competent conformation but the ammonia pathway toward the synthase active site is blocked. Mutation of two residues blocking the pathway leads to a complete uncoupling of the two reactions and to a 2800-fold amplification of glutaminase activity. Our data advance the understanding of coupling enzymatic activities in glutamine amidotransferases and raise hypotheses of the underlying molecular mechanism. Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site.,List F, Vega MC, Razeto A, Hager MC, Sterner R, Wilmanns M Chem Biol. 2012 Dec 21;19(12):1589-99. doi: 10.1016/j.chembiol.2012.10.012. PMID:23261602[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|