6eq4: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='6eq4' size='340' side='right'caption='[[6eq4]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
<StructureSection load='6eq4' size='340' side='right'caption='[[6eq4]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6eq4]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EQ4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EQ4 FirstGlance]. <br>
<table><tr><td colspan='2'>[[6eq4]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EQ4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6EQ4 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BSW:4-(3-fluoranylpyridin-4-yl)-1~{H}-pyrrolo[2,3-b]pyridine'>BSW</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NUDT1, MTH1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BSW:4-(3-fluoranylpyridin-4-yl)-1~{H}-pyrrolo[2,3-b]pyridine'>BSW</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6eq4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6eq4 OCA], [http://pdbe.org/6eq4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6eq4 RCSB], [http://www.ebi.ac.uk/pdbsum/6eq4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6eq4 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6eq4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6eq4 OCA], [https://pdbe.org/6eq4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6eq4 RCSB], [https://www.ebi.ac.uk/pdbsum/6eq4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6eq4 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/8ODP_HUMAN 8ODP_HUMAN]] Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.<ref>PMID:10373420</ref> <ref>PMID:10608900</ref> <ref>PMID:11139615</ref> <ref>PMID:12857738</ref> <ref>PMID:22556419</ref>
[https://www.uniprot.org/uniprot/8ODP_HUMAN 8ODP_HUMAN] Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.<ref>PMID:10373420</ref> <ref>PMID:10608900</ref> <ref>PMID:11139615</ref> <ref>PMID:12857738</ref> <ref>PMID:22556419</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The DNA-repair enzyme MutT homolog 1 (MTH1) is a potential target for a broad range of tumors. Its substrate binding site features a non-catalytical pair of aspartic acids which resembles the catalytic dyad of aspartic proteases. We hypothesized that inhibitors of the latter might be re-targeted for MTH1 despite the two enzyme classes having different substrates and catalyze different reactions. We selected from the crystal structures of holo aspartic proteases a library of nearly 350 inhibitors for in silico screening. Three fragment hits were identified by docking and scoring according to a force field-based energy with continuum dielectric solvation. These fragments showed good ligand efficiency in a colorimetric assay (MW &lt;300 Da and IC50&lt;50muM). Molecular dynamics simulations were carried out for determining the most favorable interaction patterns. On the basis of the simulation results we evaluated in vitro seven commercially available compounds, two of which showed submicromolar potency for MTH1. To obtain definitive evidence of the predicted binding modes we solved the crystal structures of five of the 10 inhibitors predicted in silico. The final step of hit optimization was guided by protein crystallography and involved the synthesis of a single compound, the lead 11, which shows nanomolar affinity for MTH1 in two orthogonal binding assays, and selectivity higher than 2000-fold against its original target (BACE1). The high rate of fragment-hit identification and the fast optimization suggest that ligand retargeting by binding site analogy is an efficient strategy for drug design.
 
Ligand retargeting by binding site analogy.,Wiedmer L, Scharer C, Spiliotopoulos D, Hurzeler M, Sledz P, Caflisch A Eur J Med Chem. 2019 Apr 25;175:107-113. doi: 10.1016/j.ejmech.2019.04.037. PMID:31077996<ref>PMID:31077996</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6eq4" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[7%2C8-dihydro-8-oxoguanine triphosphatase 3D structures|7%2C8-dihydro-8-oxoguanine triphosphatase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Caflisch, A]]
[[Category: Caflisch A]]
[[Category: Sledz, P]]
[[Category: Sledz P]]
[[Category: Wiedmer, L]]
[[Category: Wiedmer L]]
[[Category: Complex]]
[[Category: Dna repair]]
[[Category: Fragment]]
[[Category: Hydrolase]]
[[Category: Inhibitor]]

Latest revision as of 15:20, 9 May 2024

MTH1 in complex with fragment 8MTH1 in complex with fragment 8

Structural highlights

6eq4 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.4Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

8ODP_HUMAN Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

The DNA-repair enzyme MutT homolog 1 (MTH1) is a potential target for a broad range of tumors. Its substrate binding site features a non-catalytical pair of aspartic acids which resembles the catalytic dyad of aspartic proteases. We hypothesized that inhibitors of the latter might be re-targeted for MTH1 despite the two enzyme classes having different substrates and catalyze different reactions. We selected from the crystal structures of holo aspartic proteases a library of nearly 350 inhibitors for in silico screening. Three fragment hits were identified by docking and scoring according to a force field-based energy with continuum dielectric solvation. These fragments showed good ligand efficiency in a colorimetric assay (MW <300 Da and IC50<50muM). Molecular dynamics simulations were carried out for determining the most favorable interaction patterns. On the basis of the simulation results we evaluated in vitro seven commercially available compounds, two of which showed submicromolar potency for MTH1. To obtain definitive evidence of the predicted binding modes we solved the crystal structures of five of the 10 inhibitors predicted in silico. The final step of hit optimization was guided by protein crystallography and involved the synthesis of a single compound, the lead 11, which shows nanomolar affinity for MTH1 in two orthogonal binding assays, and selectivity higher than 2000-fold against its original target (BACE1). The high rate of fragment-hit identification and the fast optimization suggest that ligand retargeting by binding site analogy is an efficient strategy for drug design.

Ligand retargeting by binding site analogy.,Wiedmer L, Scharer C, Spiliotopoulos D, Hurzeler M, Sledz P, Caflisch A Eur J Med Chem. 2019 Apr 25;175:107-113. doi: 10.1016/j.ejmech.2019.04.037. PMID:31077996[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fujikawa K, Kamiya H, Yakushiji H, Fujii Y, Nakabeppu Y, Kasai H. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem. 1999 Jun 25;274(26):18201-5. PMID:10373420
  2. Fujii Y, Shimokawa H, Sekiguchi M, Nakabeppu Y. Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins. J Biol Chem. 1999 Dec 31;274(53):38251-9. PMID:10608900
  3. Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H. Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res. 2001 Jan 15;29(2):449-54. PMID:11139615
  4. Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y. An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem. 2003 Sep 26;278(39):37965-73. Epub 2003 Jul 10. PMID:12857738 doi:10.1074/jbc.M306201200
  5. Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem. 2012 Jun 15;287(25):21541-9. doi: 10.1074/jbc.M112.363010. Epub 2012, May 3. PMID:22556419 doi:10.1074/jbc.M112.363010
  6. Wiedmer L, Scharer C, Spiliotopoulos D, Hurzeler M, Sledz P, Caflisch A. Ligand retargeting by binding site analogy. Eur J Med Chem. 2019 Apr 25;175:107-113. doi: 10.1016/j.ejmech.2019.04.037. PMID:31077996 doi:http://dx.doi.org/10.1016/j.ejmech.2019.04.037

6eq4, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA