1uw9: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='1uw9' size='340' side='right'caption='[[1uw9]], [[Resolution|resolution]] 2.05&Aring;' scene=''>
<StructureSection load='1uw9' size='340' side='right'caption='[[1uw9]], [[Resolution|resolution]] 2.05&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1uw9]] is a 16 chain structure with sequence from [http://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UW9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1UW9 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1uw9]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UW9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UW9 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAP:2-CARBOXYARABINITOL-1,5-DIPHOSPHATE'>CAP</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.05&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=HYP:4-HYDROXYPROLINE'>HYP</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene>, <scene name='pdbligand=SMC:S-METHYLCYSTEINE'>SMC</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CAP:2-CARBOXYARABINITOL-1,5-DIPHOSPHATE'>CAP</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=HYP:4-HYDROXYPROLINE'>HYP</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SMC:S-METHYLCYSTEINE'>SMC</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1gk8|1gk8]], [[1ir2|1ir2]], [[1uwa|1uwa]]</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uw9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uw9 OCA], [https://pdbe.org/1uw9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uw9 RCSB], [https://www.ebi.ac.uk/pdbsum/1uw9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uw9 ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ribulose-bisphosphate_carboxylase Ribulose-bisphosphate carboxylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.1.39 4.1.1.39] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1uw9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uw9 OCA], [http://pdbe.org/1uw9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1uw9 RCSB], [http://www.ebi.ac.uk/pdbsum/1uw9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1uw9 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/RBL_CHLRE RBL_CHLRE]] RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338] [[http://www.uniprot.org/uniprot/RBS1_CHLRE RBS1_CHLRE]] RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate. Both reactions occur simultaneously and in competition at the same active site.
[https://www.uniprot.org/uniprot/RBL_CHLRE RBL_CHLRE] RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 33: Line 31:


==See Also==
==See Also==
*[[RuBisCO|RuBisCO]]
*[[RuBisCO 3D structures|RuBisCO 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 40: Line 38:
[[Category: Chlamydomonas reinhardtii]]
[[Category: Chlamydomonas reinhardtii]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Ribulose-bisphosphate carboxylase]]
[[Category: Andersson I]]
[[Category: Andersson, I]]
[[Category: Karkehabadi S]]
[[Category: Karkehabadi, S]]
[[Category: Spreitzer RJ]]
[[Category: Spreitzer, R J]]
[[Category: Taylor TC]]
[[Category: Taylor, T C]]
[[Category: Carbon dioxide fixation]]
[[Category: Lyase]]
[[Category: Monooxygenase]]
[[Category: Oxidoreductase]]
[[Category: Photorespiration]]
[[Category: Photosynthesis]]
[[Category: Rubisco]]

Latest revision as of 16:01, 13 December 2023

L290F-A222T chlamydomonas Rubisco mutantL290F-A222T chlamydomonas Rubisco mutant

Structural highlights

1uw9 is a 16 chain structure with sequence from Chlamydomonas reinhardtii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.05Å
Ligands:, , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RBL_CHLRE RuBisCO catalyzes two reactions: the carboxylation of D-ribulose 1,5-bisphosphate, the primary event in carbon dioxide fixation, as well as the oxidative fragmentation of the pentose substrate in the photorespiration process. Both reactions occur simultaneously and in competition at the same active site.[HAMAP-Rule:MF_01338]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Substitution of Leu290 by Phe (L290F) in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the unicellular green alga Chlamydomonas reinhardtii causes a 13% decrease in CO(2)/O(2) specificity and reduced thermal stability. Genetic selection for restored photosynthesis at the restrictive temperature identified an Ala222 to Thr (A222T) substitution that suppresses the deleterious effects of the original mutant substitution to produce a revertant enzyme with improved thermal stability and kinetic properties virtually indistinguishable from that of the wild-type enzyme. Because the mutated residues are situated approximately 19 A away from the active site, they must affect the relative rates of carboxylation and oxygenation in an indirect way. As a means for elucidating the role of such distant interactions in Rubisco catalysis and stability, we have determined the crystal structures of the L290F mutant and L290F/A222T revertant enzymes to 2.30 and 2.05 A resolution, respectively. Inspection of the structures reveals that the mutant residues interact via van der Waals contacts within the same large subunit (intrasubunit path, 15.2 A Calpha-Calpha) and also via a path involving a neighboring small subunit (intersubunit path, 18.7 A Calpha-Calpha). Structural analysis of the mutant enzymes identified regions (residues 50-72 of the small subunit and residues 161-164 and 259-264 of the large subunit) that show significant and systematically increased atomic temperature factors in the L290F mutant enzyme compared to wild type. These regions coincide with residues on the interaction paths between the L290F mutant and A222T suppressor sites and could explain the temperature-conditional phenotype of the L290F mutant strain. This suggests that alterations in subunit interactions will influence protein dynamics and, thereby, affect catalysis.

Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase.,Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I Biochemistry. 2005 Jan 11;44(1):113-20. PMID:15628851[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Karkehabadi S, Taylor TC, Spreitzer RJ, Andersson I. Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 2005 Jan 11;44(1):113-20. PMID:15628851 doi:http://dx.doi.org/10.1021/bi047928e

1uw9, resolution 2.05Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA