4rix: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='4rix' size='340' side='right'caption='[[4rix]], [[Resolution|resolution]] 3.10&Aring;' scene=''>
<StructureSection load='4rix' size='340' side='right'caption='[[4rix]], [[Resolution|resolution]] 3.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4rix]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RIX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4RIX FirstGlance]. <br>
<table><tr><td colspan='2'>[[4rix]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RIX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RIX FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4riw|4riw]], [[4riy|4riy]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ERBB3, HER3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), EGFR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rix FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rix OCA], [https://pdbe.org/4rix PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rix RCSB], [https://www.ebi.ac.uk/pdbsum/4rix PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rix ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4rix FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rix OCA], [http://pdbe.org/4rix PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4rix RCSB], [http://www.ebi.ac.uk/pdbsum/4rix PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4rix ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/ERBB3_HUMAN ERBB3_HUMAN]] Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2) [MIM:[http://omim.org/entry/607598 607598]]; also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord. The LCCS2 syndrome is characterized by multiple joint contractures, anterior horn atrophy in the spinal cord, and a unique feature of a markedly distended urinary bladder. The phenotype suggests a spinal cord neuropathic etiology.<ref>PMID:17701904</ref> [[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Defects in EGFR are associated with lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.
[https://www.uniprot.org/uniprot/ERBB3_HUMAN ERBB3_HUMAN] Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2) [MIM:[https://omim.org/entry/607598 607598]; also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord. The LCCS2 syndrome is characterized by multiple joint contractures, anterior horn atrophy in the spinal cord, and a unique feature of a markedly distended urinary bladder. The phenotype suggests a spinal cord neuropathic etiology.<ref>PMID:17701904</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/ERBB3_HUMAN ERBB3_HUMAN]] Binds and is activated by neuregulins and NTAK.<ref>PMID:15358134</ref> [[http://www.uniprot.org/uniprot/EGFR_HUMAN EGFR_HUMAN]] Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses. Known ligands include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. May also activate the NF-kappa-B signaling cascade. Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref>  Isoform 2 may act as an antagonist of EGF action.<ref>PMID:7657591</ref> <ref>PMID:11602604</ref> <ref>PMID:12873986</ref> <ref>PMID:10805725</ref> <ref>PMID:11116146</ref> <ref>PMID:11483589</ref> <ref>PMID:17115032</ref> <ref>PMID:21258366</ref> <ref>PMID:12297050</ref> <ref>PMID:12620237</ref> <ref>PMID:15374980</ref> <ref>PMID:19560417</ref> <ref>PMID:20837704</ref> 
[https://www.uniprot.org/uniprot/ERBB3_HUMAN ERBB3_HUMAN] Binds and is activated by neuregulins and NTAK.<ref>PMID:15358134</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 25: Line 23:


==See Also==
==See Also==
*[[Epidermal Growth Factor Receptor|Epidermal Growth Factor Receptor]]
*[[Epidermal growth factor receptor 3D structures|Epidermal growth factor receptor 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Jura N]]
[[Category: Jura, N]]
[[Category: Littlefield P]]
[[Category: Littlefield, P]]
[[Category: Liu L]]
[[Category: Liu, L]]
[[Category: Atp binding]]
[[Category: Kinase]]
[[Category: Membrane]]
[[Category: Pseudokinase]]
[[Category: Receptor tyrosine kinase]]
[[Category: Transferase]]

Latest revision as of 20:50, 20 September 2023

Crystal structure of an EGFR/HER3 kinase domain heterodimer containing the cancer-associated HER3-Q790R mutationCrystal structure of an EGFR/HER3 kinase domain heterodimer containing the cancer-associated HER3-Q790R mutation

Structural highlights

4rix is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

ERBB3_HUMAN Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2) [MIM:607598; also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord. The LCCS2 syndrome is characterized by multiple joint contractures, anterior horn atrophy in the spinal cord, and a unique feature of a markedly distended urinary bladder. The phenotype suggests a spinal cord neuropathic etiology.[1]

Function

ERBB3_HUMAN Binds and is activated by neuregulins and NTAK.[2]

Publication Abstract from PubMed

The human epidermal growth factor receptor (HER) tyrosine kinases homo- and heterodimerize to activate downstream signaling pathways. HER3 is a catalytically impaired member of the HER family that contributes to the development of several human malignancies and is mutated in a subset of cancers. HER3 signaling depends on heterodimerization with a catalytically active partner, in particular epidermal growth factor receptor (EGFR) (the founding family member, also known as HER1) or HER2. The activity of homodimeric complexes of catalytically active HER family members depends on allosteric activation between the two kinase domains. To determine the structural basis for HER3 signaling through heterodimerization with a catalytically active HER family member, we solved the crystal structure of the heterodimeric complex formed by the isolated kinase domains of EGFR and HER3. The structure showed HER3 as an allosteric activator of EGFR and revealed a conserved role of the allosteric mechanism in activation of HER family members through heterodimerization. To understand the effects of cancer-associated HER3 mutations at the molecular level, we solved the structures of two kinase domains of HER3 mutants, each in a heterodimeric complex with the kinase domain of EGFR. These structures, combined with biochemical analysis and molecular dynamics simulations, indicated that the cancer-associated HER3 mutations enhanced the allosteric activator function of HER3 by redesigning local interactions at the dimerization interface.

Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations.,Littlefield P, Liu L, Mysore V, Shan Y, Shaw DE, Jura N Sci Signal. 2014 Dec 2;7(354):ra114. doi: 10.1126/scisignal.2005786. PMID:25468994[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Narkis G, Ofir R, Manor E, Landau D, Elbedour K, Birk OS. Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am J Hum Genet. 2007 Sep;81(3):589-95. Epub 2007 Jul 24. PMID:17701904 doi:S0002-9297(07)61355-X
  2. Kinugasa Y, Ishiguro H, Tokita Y, Oohira A, Ohmoto H, Higashiyama S. Neuroglycan C, a novel member of the neuregulin family. Biochem Biophys Res Commun. 2004 Sep 3;321(4):1045-9. PMID:15358134 doi:10.1016/j.bbrc.2004.07.066
  3. Littlefield P, Liu L, Mysore V, Shan Y, Shaw DE, Jura N. Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations. Sci Signal. 2014 Dec 2;7(354):ra114. doi: 10.1126/scisignal.2005786. PMID:25468994 doi:http://dx.doi.org/10.1126/scisignal.2005786

4rix, resolution 3.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA