6dfs: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<StructureSection load='6dfs' size='340' side='right'caption='[[6dfs]], [[Resolution|resolution]] 3.10Å' scene=''> | <StructureSection load='6dfs' size='340' side='right'caption='[[6dfs]], [[Resolution|resolution]] 3.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6dfs]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DFS OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[6dfs]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DFS FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dfs OCA], [https://pdbe.org/6dfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dfs RCSB], [https://www.ebi.ac.uk/pdbsum/6dfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dfs ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/HA2D_MOUSE HA2D_MOUSE] | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 17: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 6dfs" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 6dfs" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[MHC 3D structures|MHC 3D structures]] | |||
*[[MHC II 3D structures|MHC II 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 22: | Line 28: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Mus musculus]] | ||
[[Category: | [[Category: Dai S]] | ||
[[Category: | [[Category: Wang Y]] | ||
Latest revision as of 11:58, 9 October 2024
mouse TCR I.29 in complex with IAg7-p8E9E6ssmouse TCR I.29 in complex with IAg7-p8E9E6ss
Structural highlights
FunctionPublication Abstract from PubMedIn type 1 diabetes (T1D), proinsulin is a major autoantigen and the insulin B:9-23 peptide contains epitopes for CD4(+) T cells in both mice and humans. This peptide requires carboxyl-terminal mutations for uniform binding in the proper position within the mouse IA(g7) or human DQ8 major histocompatibility complex (MHC) class II (MHCII) peptide grooves and for strong CD4(+) T cell stimulation. Here, we present crystal structures showing how these mutations control CD4(+) T cell receptor (TCR) binding to these MHCII-peptide complexes. Our data reveal stricking similarities between mouse and human CD4(+) TCRs in their interactions with these ligands. We also show how fusions between fragments of B:9-23 and of proinsulin C-peptide create chimeric peptides with activities as strong or stronger than the mutated insulin peptides. We propose transpeptidation in the lysosome as a mechanism that could accomplish these fusions in vivo, similar to the creation of fused peptide epitopes for MHCI presentation shown to occur by transpeptidation in the proteasome. Were this mechanism limited to the pancreas and absent in the thymus, it could provide an explanation for how diabetogenic T cells escape negative selection during development but find their modified target antigens in the pancreas to cause T1D. How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes.,Wang Y, Sosinowski T, Novikov A, Crawford F, White J, Jin N, Liu Z, Zou J, Neau D, Davidson HW, Nakayama M, Kwok WW, Gapin L, Marrack P, Kappler JW, Dai S Sci Immunol. 2019 Apr 5;4(34). pii: 4/34/eaav7517. doi:, 10.1126/sciimmunol.aav7517. PMID:30952805[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|