5zx2: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
<StructureSection load='5zx2' size='340' side='right'caption='[[5zx2]], [[Resolution|resolution]] 2.80Å' scene=''> | <StructureSection load='5zx2' size='340' side='right'caption='[[5zx2]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5zx2]] is a 9 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZX2 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[5zx2]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis_H37Rv Mycobacterium tuberculosis H37Rv] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZX2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5ZX2 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5zx2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zx2 OCA], [https://pdbe.org/5zx2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5zx2 RCSB], [https://www.ebi.ac.uk/pdbsum/5zx2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5zx2 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/RPOA_MYCTU RPOA_MYCTU] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_00059]<ref>PMID:22570422</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Bacterial RNA polymerase employs extra-cytoplasmic function (ECF) sigma factors to regulate context-specific gene expression programs. Despite being the most abundant and divergent sigma factor class, the structural basis of ECF sigma factor-mediated transcription initiation remains unknown. Here, we determine a crystal structure of Mycobacterium tuberculosis (Mtb) RNAP holoenzyme comprising an RNAP core enzyme and the ECF sigma factor sigma(H) (sigma(H)-RNAP) at 2.7 A, and solve another crystal structure of a transcription initiation complex of Mtb sigma(H)-RNAP (sigma(H)-RPo) comprising promoter DNA and an RNA primer at 2.8 A. The two structures together reveal the interactions between sigma(H) and RNAP that are essential for sigma(H)-RNAP holoenzyme assembly as well as the interactions between sigma(H)-RNAP and promoter DNA responsible for stringent promoter recognition and for promoter unwinding. Our study establishes that ECF sigma factors and primary sigma factors employ distinct mechanisms for promoter recognition and for promoter unwinding. | |||
Structural basis for transcription initiation by bacterial ECF sigma factors.,Li L, Fang C, Zhuang N, Wang T, Zhang Y Nat Commun. 2019 Mar 11;10(1):1153. doi: 10.1038/s41467-019-09096-y. PMID:30858373<ref>PMID:30858373</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5zx2" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[RNA polymerase 3D structures|RNA polymerase 3D structures]] | |||
*[[Sigma factor 3D structures|Sigma factor 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Mycobacterium tuberculosis H37Rv]] | |||
[[Category: Synthetic construct]] | |||
[[Category: Mycobacterium tuberculosis]] | [[Category: Li L]] | ||
[[Category: | [[Category: Zhang Y]] | ||
[[Category: | |||
[[Category: | |||
Latest revision as of 12:09, 22 November 2023
Mycobacterium tuberculosis RNA polymerase transcription initiation complex with ECF sigma factor sigma H and 7nt RNAMycobacterium tuberculosis RNA polymerase transcription initiation complex with ECF sigma factor sigma H and 7nt RNA
Structural highlights
FunctionRPOA_MYCTU DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_00059][1] Publication Abstract from PubMedBacterial RNA polymerase employs extra-cytoplasmic function (ECF) sigma factors to regulate context-specific gene expression programs. Despite being the most abundant and divergent sigma factor class, the structural basis of ECF sigma factor-mediated transcription initiation remains unknown. Here, we determine a crystal structure of Mycobacterium tuberculosis (Mtb) RNAP holoenzyme comprising an RNAP core enzyme and the ECF sigma factor sigma(H) (sigma(H)-RNAP) at 2.7 A, and solve another crystal structure of a transcription initiation complex of Mtb sigma(H)-RNAP (sigma(H)-RPo) comprising promoter DNA and an RNA primer at 2.8 A. The two structures together reveal the interactions between sigma(H) and RNAP that are essential for sigma(H)-RNAP holoenzyme assembly as well as the interactions between sigma(H)-RNAP and promoter DNA responsible for stringent promoter recognition and for promoter unwinding. Our study establishes that ECF sigma factors and primary sigma factors employ distinct mechanisms for promoter recognition and for promoter unwinding. Structural basis for transcription initiation by bacterial ECF sigma factors.,Li L, Fang C, Zhuang N, Wang T, Zhang Y Nat Commun. 2019 Mar 11;10(1):1153. doi: 10.1038/s41467-019-09096-y. PMID:30858373[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|