6jmh: Difference between revisions
New page: '''Unreleased structure''' The entry 6jmh is ON HOLD until Mar 10 2021 Authors: Description: Category: Unreleased Structures |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan== | |||
<StructureSection load='6jmh' size='340' side='right'caption='[[6jmh]], [[Resolution|resolution]] 1.46Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6jmh]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Priestia_megaterium Priestia megaterium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6JMH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6JMH FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.46Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MI9:Oxomolybdenum+Mesoporphyrin+IX'>MI9</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene>, <scene name='pdbligand=WAA:(2S)-2-[[(1R,4aR,4bR,10aR)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthren-1-yl]carbonylamino]-3-(+1H-indol-3-yl)propanoic+acid'>WAA</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6jmh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6jmh OCA], [https://pdbe.org/6jmh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6jmh RCSB], [https://www.ebi.ac.uk/pdbsum/6jmh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6jmh ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CPXB_PRIM2 CPXB_PRIM2] Functions as a fatty acid monooxygenase (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Catalyzes hydroxylation of fatty acids at omega-1, omega-2 and omega-3 positions (PubMed:1727637, PubMed:21875028). Shows activity toward medium and long-chain fatty acids, with optimum chain lengths of 12, 14 and 16 carbons (lauric, myristic, and palmitic acids). Able to metabolize some of these primary metabolites to secondary and tertiary products (PubMed:1727637). Marginal activity towards short chain lengths of 8-10 carbons (PubMed:1727637, PubMed:18619466). Hydroxylates highly branched fatty acids, which play an essential role in membrane fluidity regulation (PubMed:16566047). Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Involved in inactivation of quorum sensing signals of other competing bacteria by oxidazing efficiently acyl homoserine lactones (AHLs), molecules involved in quorum sensing signaling pathways, and their lactonolysis products acyl homoserines (AHs) (PubMed:18020460).<ref>PMID:11695892</ref> <ref>PMID:14653735</ref> <ref>PMID:16403573</ref> <ref>PMID:16566047</ref> <ref>PMID:17077084</ref> <ref>PMID:1727637</ref> <ref>PMID:17868686</ref> <ref>PMID:18004886</ref> <ref>PMID:18020460</ref> <ref>PMID:18298086</ref> <ref>PMID:18619466</ref> <ref>PMID:18721129</ref> <ref>PMID:19492389</ref> <ref>PMID:20180779</ref> <ref>PMID:21110374</ref> <ref>PMID:21875028</ref> <ref>PMID:3106359</ref> <ref>PMID:7578081</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Despite CYP102A1 (P450BM3) representing one of the most extensively researched metalloenzymes, crystallisation of its haem domain upon modification can be a challenge. Crystal structures are indispensable for the efficient structure-based design of P450BM3 as a biocatalyst. The abietane diterpenoid derivative N-abietoyl-l-tryptophan (AbiATrp) is an outstanding crystallisation accelerator for the wild-type P450BM3 haem domain, with visible crystals forming within 2 hours and diffracting to a near-atomic resolution of 1.22 A. Using these crystals as seeds in a cross-microseeding approach, an assortment of P450BM3 haem domain crystal structures, containing previously uncrystallisable decoy molecules and diverse artificial metalloporphyrins binding various ligand molecules, as well as heavily tagged haem-domain variants, could be determined. Some of the structures reported herein could be used as models of different stages of the P450BM3 catalytic cycle. | |||
Crystals in Minutes: Instant On-Site Microcrystallisation of Various Flavours of the CYP102A1 (P450BM3) Haem Domain.,Stanfield JK, Omura K, Matsumoto A, Kasai C, Sugimoto H, Shiro Y, Watanabe Y, Shoji O Angew Chem Int Ed Engl. 2020 Mar 11. doi: 10.1002/anie.201913407. PMID:32157795<ref>PMID:32157795</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6jmh" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Cytochrome P450 3D structures|Cytochrome P450 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Priestia megaterium]] | |||
[[Category: Kasai C]] | |||
[[Category: Omura K]] | |||
[[Category: Shiro Y]] | |||
[[Category: Shoji O]] | |||
[[Category: Stanfield JK]] | |||
[[Category: Sugimoto H]] | |||
[[Category: Watanabe Y]] |
Latest revision as of 13:15, 22 November 2023
Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-TryptophanStructure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan
Structural highlights
FunctionCPXB_PRIM2 Functions as a fatty acid monooxygenase (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Catalyzes hydroxylation of fatty acids at omega-1, omega-2 and omega-3 positions (PubMed:1727637, PubMed:21875028). Shows activity toward medium and long-chain fatty acids, with optimum chain lengths of 12, 14 and 16 carbons (lauric, myristic, and palmitic acids). Able to metabolize some of these primary metabolites to secondary and tertiary products (PubMed:1727637). Marginal activity towards short chain lengths of 8-10 carbons (PubMed:1727637, PubMed:18619466). Hydroxylates highly branched fatty acids, which play an essential role in membrane fluidity regulation (PubMed:16566047). Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Involved in inactivation of quorum sensing signals of other competing bacteria by oxidazing efficiently acyl homoserine lactones (AHLs), molecules involved in quorum sensing signaling pathways, and their lactonolysis products acyl homoserines (AHs) (PubMed:18020460).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] Publication Abstract from PubMedDespite CYP102A1 (P450BM3) representing one of the most extensively researched metalloenzymes, crystallisation of its haem domain upon modification can be a challenge. Crystal structures are indispensable for the efficient structure-based design of P450BM3 as a biocatalyst. The abietane diterpenoid derivative N-abietoyl-l-tryptophan (AbiATrp) is an outstanding crystallisation accelerator for the wild-type P450BM3 haem domain, with visible crystals forming within 2 hours and diffracting to a near-atomic resolution of 1.22 A. Using these crystals as seeds in a cross-microseeding approach, an assortment of P450BM3 haem domain crystal structures, containing previously uncrystallisable decoy molecules and diverse artificial metalloporphyrins binding various ligand molecules, as well as heavily tagged haem-domain variants, could be determined. Some of the structures reported herein could be used as models of different stages of the P450BM3 catalytic cycle. Crystals in Minutes: Instant On-Site Microcrystallisation of Various Flavours of the CYP102A1 (P450BM3) Haem Domain.,Stanfield JK, Omura K, Matsumoto A, Kasai C, Sugimoto H, Shiro Y, Watanabe Y, Shoji O Angew Chem Int Ed Engl. 2020 Mar 11. doi: 10.1002/anie.201913407. PMID:32157795[19] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|