3fjf: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of C83T mutant of Human acidic fibroblast growth factor== | ==Crystal structure of C83T mutant of Human acidic fibroblast growth factor== | ||
<StructureSection load='3fjf' size='340' side='right' caption='[[3fjf]], [[Resolution|resolution]] 1.90Å' scene=''> | <StructureSection load='3fjf' size='340' side='right'caption='[[3fjf]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3fjf]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3fjf]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FJF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3FJF FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene></td></tr> | |||
<tr id=' | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fjf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fjf OCA], [https://pdbe.org/3fjf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fjf RCSB], [https://www.ebi.ac.uk/pdbsum/3fjf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fjf ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/FGF1_HUMAN FGF1_HUMAN] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.<ref>PMID:8663044</ref> <ref>PMID:16597617</ref> <ref>PMID:20145243</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 32: | Line 31: | ||
==See Also== | ==See Also== | ||
*[[Fibroblast growth factor|Fibroblast growth factor]] | *[[Fibroblast growth factor 3D structures|Fibroblast growth factor 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Blaber M]] | ||
[[Category: | [[Category: Lee J]] | ||
Latest revision as of 09:46, 6 September 2023
Crystal structure of C83T mutant of Human acidic fibroblast growth factorCrystal structure of C83T mutant of Human acidic fibroblast growth factor
Structural highlights
FunctionFGF1_HUMAN Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe 22 members of the mouse/human fibroblast growth factor (FGF) family of proteins contain a conserved cysteine residue at position 83 (numbering scheme of the 140-residue form of FGF-1). Sequence and structure information suggests that this position is a free cysteine in 16 members and participates as a half-cystine in at least 3 (and perhaps as many as 6) other members. While a structural role as a half-cystine provides a stability basis for possible selective pressure, it is less clear why this residue is conserved as a free cysteine (although free buried thiols can limit protein functional half-life). To probe the structural role of the free cysteine at position 83 in FGF-1, we constructed Ala, Ser, Thr, Val, and Ile mutations and determined their effects on structure and stability. These results show that position 83 in FGF-1 is thermodynamically optimized to accept a free cysteine. A second cysteine mutation was introduced into wild-type FGF-1 at adjacent position Ala66, which is known to participate as a half-cystine with position 83 in FGF-8, FGF-19, and FGF-23. Results show that, unlike position 83, a free cysteine at position 66 destabilizes FGF-1; however, upon oxidation, a near-optimal disulfide bond is formed between Cys66 and Cys83, resulting in approximately 14 kJ/mol of increased thermostability. Thus, while the conserved free cysteine at position 83 in the majority of the FGF proteins may have a principal role in limiting functional half-life, evidence suggests that it is a vestigial half-cystine. Structural basis of conserved cysteine in the fibroblast growth factor family: evidence for a vestigial half-cystine.,Lee J, Blaber M J Mol Biol. 2009 Oct 16;393(1):128-39. Epub 2009 Aug 13. PMID:19683004[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|