5y2f: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='5y2f' size='340' side='right' caption='[[5y2f]], [[Resolution|resolution]] 2.53&Aring;' scene=''>
<StructureSection load='5y2f' size='340' side='right' caption='[[5y2f]], [[Resolution|resolution]] 2.53&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5y2f]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5Y2F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5Y2F FirstGlance]. <br>
<table><tr><td colspan='2'>[[5y2f]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5Y2F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5Y2F FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=8L9:5-[[3,5-bis(chloranyl)phenyl]sulfonylamino]-2-[(5-bromanyl-4-fluoranyl-2-methyl-phenyl)sulfamoyl]benzoic+acid'>8L9</scene>, <scene name='pdbligand=AR6:[(2R,3S,4R,5R)-5-(6-AMINOPURIN-9-YL)-3,4-DIHYDROXY-OXOLAN-2-YL]METHYL+[HYDROXY-[[(2R,3S,4R,5S)-3,4,5-TRIHYDROXYOXOLAN-2-YL]METHOXY]PHOSPHORYL]+HYDROGEN+PHOSPHATE'>AR6</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HDR:HEXADECANE-1-SULFINIC+ACID'>HDR</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=8L9:5-[[3,5-bis(chloranyl)phenyl]sulfonylamino]-2-[(5-bromanyl-4-fluoranyl-2-methyl-phenyl)sulfamoyl]benzoic+acid'>8L9</scene>, <scene name='pdbligand=AR6:[(2R,3S,4R,5R)-5-(6-AMINOPURIN-9-YL)-3,4-DIHYDROXY-OXOLAN-2-YL]METHYL+[HYDROXY-[[(2R,3S,4R,5S)-3,4,5-TRIHYDROXYOXOLAN-2-YL]METHOXY]PHOSPHORYL]+HYDROGEN+PHOSPHATE'>AR6</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HDR:HEXADECANE-1-SULFINIC+ACID'>HDR</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SIRT6, SIR2L6 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5y2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5y2f OCA], [http://pdbe.org/5y2f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5y2f RCSB], [http://www.ebi.ac.uk/pdbsum/5y2f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5y2f ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5y2f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5y2f OCA], [http://pdbe.org/5y2f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5y2f RCSB], [http://www.ebi.ac.uk/pdbsum/5y2f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5y2f ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SIR6_HUMAN SIR6_HUMAN]] NAD-dependent protein deacetylase. Has deacetylase activity towards histone H3K9Ac and H3K56Ac. Modulates acetylation of histone H3 in telomeric chromatin during the S-phase of the cell cycle. Deacetylates histone H3K9Ac at NF-kappa-B target promoters and may down-regulate the expression of a subset of NF-kappa-B target genes. Acts as a corepressor of the transcription factor HIF1A to control the expression of multiple glycolytic genes to regulate glucose homeostasis. Required for genomic stability. Regulates the production of TNF protein. Has a role in the regulation of life span (By similarity). Deacetylation of nucleosomes interferes with RELA binding to target DNA. May be required for the association of WRN with telomeres during S-phase and for normal telomere maintenance. Required for genomic stability. Required for normal IGF1 serum levels and normal glucose homeostasis. Modulates cellular senescence and apoptosis. On DNA damage, promotes DNA end resection via deacetylation of RBBP8. Has very weak deacetylase activity and can bind NAD(+) in the absence of acetylated substrate.<ref>PMID:18337721</ref> <ref>PMID:19135889</ref> <ref>PMID:19625767</ref> <ref>PMID:20829486</ref> <ref>PMID:21362626</ref>   
[[http://www.uniprot.org/uniprot/SIR6_HUMAN SIR6_HUMAN]] NAD-dependent protein deacetylase. Has deacetylase activity towards histone H3K9Ac and H3K56Ac. Modulates acetylation of histone H3 in telomeric chromatin during the S-phase of the cell cycle. Deacetylates histone H3K9Ac at NF-kappa-B target promoters and may down-regulate the expression of a subset of NF-kappa-B target genes. Acts as a corepressor of the transcription factor HIF1A to control the expression of multiple glycolytic genes to regulate glucose homeostasis. Required for genomic stability. Regulates the production of TNF protein. Has a role in the regulation of life span (By similarity). Deacetylation of nucleosomes interferes with RELA binding to target DNA. May be required for the association of WRN with telomeres during S-phase and for normal telomere maintenance. Required for genomic stability. Required for normal IGF1 serum levels and normal glucose homeostasis. Modulates cellular senescence and apoptosis. On DNA damage, promotes DNA end resection via deacetylation of RBBP8. Has very weak deacetylase activity and can bind NAD(+) in the absence of acetylated substrate.<ref>PMID:18337721</ref> <ref>PMID:19135889</ref> <ref>PMID:19625767</ref> <ref>PMID:20829486</ref> <ref>PMID:21362626</ref>   
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
SIRT6, a member of the SIRT deacetylase family, is responsible for deacetylation of histone H3 N(epsilon)-acetyl-lysines 9 (H3K9ac) and 56 (H3K56ac). As a tumor suppressor, SIRT6 has frequently been found to have low expression in various cancers. Here, we report the identification of MDL-800, a selective SIRT6 activator. MDL-800 increased the deacetylase activity of SIRT6 by up to 22-fold via binding to an allosteric site; this interaction led to a global decrease in H3K9ac and H3K56ac levels in human hepatocellular carcinoma (HCC) cells. Consequently, MDL-800 inhibited the proliferation of HCC cells via SIRT6-driven cell-cycle arrest and was effective in a tumor xenograft model. Together, these data demonstrate that pharmacological activation of SIRT6 is a potential therapeutic approach for the treatment of HCC. MDL-800 is a first-in-class small-molecule cellular SIRT6 activator that can be used to physiologically and pathologically investigate the roles of SIRT6 deacetylation.
Identification of a cellularly active SIRT6 allosteric activator.,Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J Nat Chem Biol. 2018 Oct 29. pii: 10.1038/s41589-018-0150-0. doi:, 10.1038/s41589-018-0150-0. PMID:30374165<ref>PMID:30374165</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 5y2f" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Huang, Z]]
[[Category: Huang, Z]]
[[Category: Song, K]]
[[Category: Song, K]]

Latest revision as of 11:53, 14 November 2018

Human SIRT6 in complex with allosteric activator MDL-801Human SIRT6 in complex with allosteric activator MDL-801

Structural highlights

5y2f is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , ,
Gene:SIRT6, SIR2L6 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[SIR6_HUMAN] NAD-dependent protein deacetylase. Has deacetylase activity towards histone H3K9Ac and H3K56Ac. Modulates acetylation of histone H3 in telomeric chromatin during the S-phase of the cell cycle. Deacetylates histone H3K9Ac at NF-kappa-B target promoters and may down-regulate the expression of a subset of NF-kappa-B target genes. Acts as a corepressor of the transcription factor HIF1A to control the expression of multiple glycolytic genes to regulate glucose homeostasis. Required for genomic stability. Regulates the production of TNF protein. Has a role in the regulation of life span (By similarity). Deacetylation of nucleosomes interferes with RELA binding to target DNA. May be required for the association of WRN with telomeres during S-phase and for normal telomere maintenance. Required for genomic stability. Required for normal IGF1 serum levels and normal glucose homeostasis. Modulates cellular senescence and apoptosis. On DNA damage, promotes DNA end resection via deacetylation of RBBP8. Has very weak deacetylase activity and can bind NAD(+) in the absence of acetylated substrate.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

SIRT6, a member of the SIRT deacetylase family, is responsible for deacetylation of histone H3 N(epsilon)-acetyl-lysines 9 (H3K9ac) and 56 (H3K56ac). As a tumor suppressor, SIRT6 has frequently been found to have low expression in various cancers. Here, we report the identification of MDL-800, a selective SIRT6 activator. MDL-800 increased the deacetylase activity of SIRT6 by up to 22-fold via binding to an allosteric site; this interaction led to a global decrease in H3K9ac and H3K56ac levels in human hepatocellular carcinoma (HCC) cells. Consequently, MDL-800 inhibited the proliferation of HCC cells via SIRT6-driven cell-cycle arrest and was effective in a tumor xenograft model. Together, these data demonstrate that pharmacological activation of SIRT6 is a potential therapeutic approach for the treatment of HCC. MDL-800 is a first-in-class small-molecule cellular SIRT6 activator that can be used to physiologically and pathologically investigate the roles of SIRT6 deacetylation.

Identification of a cellularly active SIRT6 allosteric activator.,Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J Nat Chem Biol. 2018 Oct 29. pii: 10.1038/s41589-018-0150-0. doi:, 10.1038/s41589-018-0150-0. PMID:30374165[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008 Mar 27;452(7186):492-6. doi: 10.1038/nature06736. Epub 2008 Mar 12. PMID:18337721 doi:10.1038/nature06736
  2. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009 Jan 9;136(1):62-74. doi: 10.1016/j.cell.2008.10.052. PMID:19135889 doi:10.1016/j.cell.2008.10.052
  3. Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009 Aug 15;8(16):2664-6. Epub 2009 Aug 26. PMID:19625767
  4. Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010 Sep 10;329(5997):1348-53. doi: 10.1126/science.1192049. PMID:20829486 doi:10.1126/science.1192049
  5. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM. Structure and biochemical functions of SIRT6. J Biol Chem. 2011 Apr 22;286(16):14575-87. Epub 2011 Mar 1. PMID:21362626 doi:10.1074/jbc.M111.218990
  6. Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J. Identification of a cellularly active SIRT6 allosteric activator. Nat Chem Biol. 2018 Oct 29. pii: 10.1038/s41589-018-0150-0. doi:, 10.1038/s41589-018-0150-0. PMID:30374165 doi:http://dx.doi.org/10.1038/s41589-018-0150-0

5y2f, resolution 2.53Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA