6ccx: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==NMR data-driven model of GTPase KRas-GMPPNP:Cmpd2 complex tethered to a nanodisc==
==NMR data-driven model of GTPase KRas-GMPPNP:Cmpd2 complex tethered to a nanodisc==
<StructureSection load='6ccx' size='340' side='right' caption='[[6ccx]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
<StructureSection load='6ccx' size='340' side='right'caption='[[6ccx]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6ccx]] is a 3 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CCX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CCX FirstGlance]. <br>
<table><tr><td colspan='2'>[[6ccx]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CCX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CCX FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=17F:O-[(S)-({(2R)-2,3-BIS[(9Z)-OCTADEC-9-ENOYLOXY]PROPYL}OXY)(HYDROXY)PHOSPHORYL]-L-SERINE'>17F</scene>, <scene name='pdbligand=EWS:(2R,4S)-4-[(5-bromo-1H-indole-3-carbonyl)amino]-2-[(4-chlorophenyl)methyl]piperidin-1-ium'>EWS</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PCW:1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PCW</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=17F:O-[(S)-({(2R)-2,3-BIS[(9Z)-OCTADEC-9-ENOYLOXY]PROPYL}OXY)(HYDROXY)PHOSPHORYL]-L-SERINE'>17F</scene>, <scene name='pdbligand=EWS:(2R,4S)-4-[(5-bromo-1H-indole-3-carbonyl)amino]-2-[(4-chlorophenyl)methyl]piperidin-1-ium'>EWS</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PCW:1,2-DIOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>PCW</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ccx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ccx OCA], [http://pdbe.org/6ccx PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ccx RCSB], [http://www.ebi.ac.uk/pdbsum/6ccx PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ccx ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ccx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ccx OCA], [https://pdbe.org/6ccx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ccx RCSB], [https://www.ebi.ac.uk/pdbsum/6ccx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ccx ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/APOA1_HUMAN APOA1_HUMAN]] Defects in APOA1 are a cause of high density lipoprotein deficiency type 2 (HDLD2) [MIM:[http://omim.org/entry/604091 604091]]; also known as familial hypoalphalipoproteinemia (FHA). Inheritance is autosomal dominant.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref>  Defects in APOA1 are a cause of the low HDL levels observed in high density lipoprotein deficiency type 1 (HDLD1) [MIM:[http://omim.org/entry/205400 205400]]; also known as analphalipoproteinemia or Tangier disease (TGD). HDLD1 is a recessive disorder characterized by the absence of plasma HDL, accumulation of cholesteryl esters, premature coronary artery disease, hepatosplenomegaly, recurrent peripheral neuropathy and progressive muscle wasting and weakness. In HDLD1 patients, ApoA-I fails to associate with HDL probably because of the faulty conversion of pro-ApoA-I molecules into mature chains, either due to a defect in the converting enzyme activity or a specific structural defect in Tangier ApoA-I.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref>  Note=A mutation in APOA1 is the cause of amyloid polyneuropathy-nephropathy Iowa type (AMYLIOWA); also known as amyloidosis van Allen type or familial amyloid polyneuropathy type III. AMYLIOWA is a hereditary generalized amyloidosis due to deposition of amyloid mainly constituted by apolipoprotein A1. The clinical picture is dominated by neuropathy in the early stages of the disease and nephropathy late in the course. Death is due in most cases to renal amyloidosis. Severe peptic ulcer disease can occurr in some and hearing loss is frequent. Cataracts is present in several, but vitreous opacities are not observed.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref> <ref>PMID:3142462</ref> <ref>PMID:2123470</ref>  Defects in APOA1 are a cause of amyloidosis type 8 (AMYL8) [MIM:[http://omim.org/entry/105200 105200]]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref> <ref>PMID:1502149</ref> [[http://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:[http://omim.org/entry/601626 601626]]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:8955068</ref>  Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[http://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.  Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:[http://omim.org/entry/609942 609942]]. Noonan syndrome (NS) [MIM:[http://omim.org/entry/163950 163950]] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.<ref>PMID:16773572</ref> <ref>PMID:16474405</ref> <ref>PMID:17468812</ref> <ref>PMID:17056636</ref> <ref>PMID:19396835</ref> <ref>PMID:20949621</ref>  Defects in KRAS are a cause of gastric cancer (GASC) [MIM:[http://omim.org/entry/613659 613659]]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.<ref>PMID:3034404</ref> <ref>PMID:7773929</ref> <ref>PMID:14534542</ref>  Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.<ref>PMID:8439212</ref>  Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[http://omim.org/entry/115150 115150]]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.  Note=KRAS mutations are involved in cancer development.
[https://www.uniprot.org/uniprot/APOA1_HUMAN APOA1_HUMAN] Defects in APOA1 are a cause of high density lipoprotein deficiency type 2 (HDLD2) [MIM:[https://omim.org/entry/604091 604091]; also known as familial hypoalphalipoproteinemia (FHA). Inheritance is autosomal dominant.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref>  Defects in APOA1 are a cause of the low HDL levels observed in high density lipoprotein deficiency type 1 (HDLD1) [MIM:[https://omim.org/entry/205400 205400]; also known as analphalipoproteinemia or Tangier disease (TGD). HDLD1 is a recessive disorder characterized by the absence of plasma HDL, accumulation of cholesteryl esters, premature coronary artery disease, hepatosplenomegaly, recurrent peripheral neuropathy and progressive muscle wasting and weakness. In HDLD1 patients, ApoA-I fails to associate with HDL probably because of the faulty conversion of pro-ApoA-I molecules into mature chains, either due to a defect in the converting enzyme activity or a specific structural defect in Tangier ApoA-I.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref>  Note=A mutation in APOA1 is the cause of amyloid polyneuropathy-nephropathy Iowa type (AMYLIOWA); also known as amyloidosis van Allen type or familial amyloid polyneuropathy type III. AMYLIOWA is a hereditary generalized amyloidosis due to deposition of amyloid mainly constituted by apolipoprotein A1. The clinical picture is dominated by neuropathy in the early stages of the disease and nephropathy late in the course. Death is due in most cases to renal amyloidosis. Severe peptic ulcer disease can occurr in some and hearing loss is frequent. Cataracts is present in several, but vitreous opacities are not observed.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref> <ref>PMID:3142462</ref> <ref>PMID:2123470</ref>  Defects in APOA1 are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8240372</ref> <ref>PMID:8282791</ref> <ref>PMID:1502149</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/APOA1_HUMAN APOA1_HUMAN]] Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility.<ref>PMID:1909888</ref> [[http://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.
[https://www.uniprot.org/uniprot/APOA1_HUMAN APOA1_HUMAN] Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility.<ref>PMID:1909888</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
KRAS is frequently mutated in several of the most lethal types of cancer; however, the KRAS protein has proven a challenging drug target. K-RAS4B must be localized to the plasma membrane by prenylation to activate oncogenic signaling, thus we endeavored to target the protein-membrane interface with small-molecule compounds. While all reported lead compounds have low affinity for KRAS in solution, the potency of Cmpd2 was strongly enhanced when prenylated K-RAS4B is associated with a lipid bilayer. We have elucidated a unique mechanism of action of Cmpd2, which simultaneously engages a shallow pocket on KRAS and associates with the lipid bilayer, thereby stabilizing KRAS in an orientation in which the membrane occludes its effector-binding site, reducing RAF binding and impairing activation of RAF. Furthermore, enrichment of Cmpd2 on the bilayer enhances potency by promoting interaction with KRAS. This insight reveals a novel approach to developing inhibitors of membrane-associated proteins.
 
Inhibition of K-RAS4B by a Unique Mechanism of Action: Stabilizing Membrane-Dependent Occlusion of the Effector-Binding Site.,Fang Z, Marshall CB, Nishikawa T, Gossert AD, Jansen JM, Jahnke W, Ikura M Cell Chem Biol. 2018 Aug 14. pii: S2451-9456(18)30261-7. doi:, 10.1016/j.chembiol.2018.07.009. PMID:30122370<ref>PMID:30122370</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6ccx" style="background-color:#fffaf0;"></div>
 
==See Also==
*[[GTPase KRas 3D structures|GTPase KRas 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Fang, Z]]
[[Category: Homo sapiens]]
[[Category: Gossert, A D]]
[[Category: Large Structures]]
[[Category: Ikura, M]]
[[Category: Fang Z]]
[[Category: Jahnke, W]]
[[Category: Gossert AD]]
[[Category: Jansen, J M]]
[[Category: Ikura M]]
[[Category: Marshall, C B]]
[[Category: Jahnke W]]
[[Category: Nishikawa, T]]
[[Category: Jansen JM]]
[[Category: Membrane protein-oncoprotein complex]]
[[Category: Marshall CB]]
[[Category: Protein-bilayer-compound complex]]
[[Category: Nishikawa T]]

Latest revision as of 13:39, 14 June 2023

NMR data-driven model of GTPase KRas-GMPPNP:Cmpd2 complex tethered to a nanodiscNMR data-driven model of GTPase KRas-GMPPNP:Cmpd2 complex tethered to a nanodisc

Structural highlights

6ccx is a 3 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

APOA1_HUMAN Defects in APOA1 are a cause of high density lipoprotein deficiency type 2 (HDLD2) [MIM:604091; also known as familial hypoalphalipoproteinemia (FHA). Inheritance is autosomal dominant.[1] [2] Defects in APOA1 are a cause of the low HDL levels observed in high density lipoprotein deficiency type 1 (HDLD1) [MIM:205400; also known as analphalipoproteinemia or Tangier disease (TGD). HDLD1 is a recessive disorder characterized by the absence of plasma HDL, accumulation of cholesteryl esters, premature coronary artery disease, hepatosplenomegaly, recurrent peripheral neuropathy and progressive muscle wasting and weakness. In HDLD1 patients, ApoA-I fails to associate with HDL probably because of the faulty conversion of pro-ApoA-I molecules into mature chains, either due to a defect in the converting enzyme activity or a specific structural defect in Tangier ApoA-I.[3] [4] Note=A mutation in APOA1 is the cause of amyloid polyneuropathy-nephropathy Iowa type (AMYLIOWA); also known as amyloidosis van Allen type or familial amyloid polyneuropathy type III. AMYLIOWA is a hereditary generalized amyloidosis due to deposition of amyloid mainly constituted by apolipoprotein A1. The clinical picture is dominated by neuropathy in the early stages of the disease and nephropathy late in the course. Death is due in most cases to renal amyloidosis. Severe peptic ulcer disease can occurr in some and hearing loss is frequent. Cataracts is present in several, but vitreous opacities are not observed.[5] [6] [7] [8] Defects in APOA1 are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[9] [10] [11]

Function

APOA1_HUMAN Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility.[12]

Publication Abstract from PubMed

KRAS is frequently mutated in several of the most lethal types of cancer; however, the KRAS protein has proven a challenging drug target. K-RAS4B must be localized to the plasma membrane by prenylation to activate oncogenic signaling, thus we endeavored to target the protein-membrane interface with small-molecule compounds. While all reported lead compounds have low affinity for KRAS in solution, the potency of Cmpd2 was strongly enhanced when prenylated K-RAS4B is associated with a lipid bilayer. We have elucidated a unique mechanism of action of Cmpd2, which simultaneously engages a shallow pocket on KRAS and associates with the lipid bilayer, thereby stabilizing KRAS in an orientation in which the membrane occludes its effector-binding site, reducing RAF binding and impairing activation of RAF. Furthermore, enrichment of Cmpd2 on the bilayer enhances potency by promoting interaction with KRAS. This insight reveals a novel approach to developing inhibitors of membrane-associated proteins.

Inhibition of K-RAS4B by a Unique Mechanism of Action: Stabilizing Membrane-Dependent Occlusion of the Effector-Binding Site.,Fang Z, Marshall CB, Nishikawa T, Gossert AD, Jansen JM, Jahnke W, Ikura M Cell Chem Biol. 2018 Aug 14. pii: S2451-9456(18)30261-7. doi:, 10.1016/j.chembiol.2018.07.009. PMID:30122370[13]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nakata K, Kobayashi K, Yanagi H, Shimakura Y, Tsuchiya S, Arinami T, Hamaguchi H. Autosomal dominant hypoalphalipoproteinemia due to a completely defective apolipoprotein A-I gene. Biochem Biophys Res Commun. 1993 Oct 29;196(2):950-5. PMID:8240372 doi:http://dx.doi.org/S0006-291X(83)72341-7
  2. Ng DS, Leiter LA, Vezina C, Connelly PW, Hegele RA. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest. 1994 Jan;93(1):223-9. PMID:8282791 doi:http://dx.doi.org/10.1172/JCI116949
  3. Nakata K, Kobayashi K, Yanagi H, Shimakura Y, Tsuchiya S, Arinami T, Hamaguchi H. Autosomal dominant hypoalphalipoproteinemia due to a completely defective apolipoprotein A-I gene. Biochem Biophys Res Commun. 1993 Oct 29;196(2):950-5. PMID:8240372 doi:http://dx.doi.org/S0006-291X(83)72341-7
  4. Ng DS, Leiter LA, Vezina C, Connelly PW, Hegele RA. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest. 1994 Jan;93(1):223-9. PMID:8282791 doi:http://dx.doi.org/10.1172/JCI116949
  5. Nakata K, Kobayashi K, Yanagi H, Shimakura Y, Tsuchiya S, Arinami T, Hamaguchi H. Autosomal dominant hypoalphalipoproteinemia due to a completely defective apolipoprotein A-I gene. Biochem Biophys Res Commun. 1993 Oct 29;196(2):950-5. PMID:8240372 doi:http://dx.doi.org/S0006-291X(83)72341-7
  6. Ng DS, Leiter LA, Vezina C, Connelly PW, Hegele RA. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest. 1994 Jan;93(1):223-9. PMID:8282791 doi:http://dx.doi.org/10.1172/JCI116949
  7. Nichols WC, Dwulet FE, Liepnieks J, Benson MD. Variant apolipoprotein AI as a major constituent of a human hereditary amyloid. Biochem Biophys Res Commun. 1988 Oct 31;156(2):762-8. PMID:3142462
  8. Nichols WC, Gregg RE, Brewer HB Jr, Benson MD. A mutation in apolipoprotein A-I in the Iowa type of familial amyloidotic polyneuropathy. Genomics. 1990 Oct;8(2):318-23. PMID:2123470
  9. Nakata K, Kobayashi K, Yanagi H, Shimakura Y, Tsuchiya S, Arinami T, Hamaguchi H. Autosomal dominant hypoalphalipoproteinemia due to a completely defective apolipoprotein A-I gene. Biochem Biophys Res Commun. 1993 Oct 29;196(2):950-5. PMID:8240372 doi:http://dx.doi.org/S0006-291X(83)72341-7
  10. Ng DS, Leiter LA, Vezina C, Connelly PW, Hegele RA. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest. 1994 Jan;93(1):223-9. PMID:8282791 doi:http://dx.doi.org/10.1172/JCI116949
  11. Soutar AK, Hawkins PN, Vigushin DM, Tennent GA, Booth SE, Hutton T, Nguyen O, Totty NF, Feest TG, Hsuan JJ, et al.. Apolipoprotein AI mutation Arg-60 causes autosomal dominant amyloidosis. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7389-93. PMID:1502149
  12. Akerlof E, Jornvall H, Slotte H, Pousette A. Identification of apolipoprotein A1 and immunoglobulin as components of a serum complex that mediates activation of human sperm motility. Biochemistry. 1991 Sep 17;30(37):8986-90. PMID:1909888
  13. Fang Z, Marshall CB, Nishikawa T, Gossert AD, Jansen JM, Jahnke W, Ikura M. Inhibition of K-RAS4B by a Unique Mechanism of Action: Stabilizing Membrane-Dependent Occlusion of the Effector-Binding Site. Cell Chem Biol. 2018 Aug 14. pii: S2451-9456(18)30261-7. doi:, 10.1016/j.chembiol.2018.07.009. PMID:30122370 doi:http://dx.doi.org/10.1016/j.chembiol.2018.07.009
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA