6h4x: Difference between revisions
New page: '''Unreleased structure''' The entry 6h4x is ON HOLD Authors: Le Bihan, Y.V., van Montfort, R.L.M. Description: Crystal structure of human KDM4A in complex with compound 17b [[Category... |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of human KDM4A in complex with compound 17b== | |||
<StructureSection load='6h4x' size='340' side='right'caption='[[6h4x]], [[Resolution|resolution]] 2.34Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6h4x]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6H4X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6H4X FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=DMS:DIMETHYL+SULFOXIDE'>DMS</scene>, <scene name='pdbligand=FNQ:8-[4-[2-[4-(4-pyridin-3-ylphenyl)piperidin-1-yl]ethyl]pyrazol-1-yl]-3~{H}-pyrido[3,4-d]pyrimidin-4-one'>FNQ</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6h4x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6h4x OCA], [http://pdbe.org/6h4x PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6h4x RCSB], [http://www.ebi.ac.uk/pdbsum/6h4x PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6h4x ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/KDM4A_HUMAN KDM4A_HUMAN]] Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively.<ref>PMID:16024779</ref> <ref>PMID:16603238</ref> <ref>PMID:21694756</ref> Isoform 2: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain.<ref>PMID:16024779</ref> <ref>PMID:16603238</ref> <ref>PMID:21694756</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted. Additionally, conformational restriction of the flexible pyridopyrimidinone C8-substituent was investigated. These approaches yielded potent and cell-penetrant dual KDM4/5-subfamily inhibitors including 19a (KDM4A and KDM5B Ki=0.004 and 0.007muM, respectively). Compound cellular profiling in two orthogonal target engagement assays revealed a significant reduction from biochemical to cell-based activity across multiple analogues; this decrease was shown to be consistent with 2OG competition, and suggests that sub-nanomolar biochemical potency will be required with C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one compounds to achieve sub-micromolar target inhibition in cells. | |||
C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones: Studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays.,Le Bihan YV, Lanigan RM, Atrash B, McLaughlin MG, Velupillai S, Malcolm AG, England KS, Ruda GF, Mok NY, Tumber A, Tomlin K, Saville H, Shehu E, McAndrew C, Carmichael L, Bennett JM, Jeganathan F, Eve P, Donovan A, Hayes A, Wood F, Raynaud FI, Fedorov O, Brennan PE, Burke R, van Montfort RLM, Rossanese OW, Blagg J, Bavetsias V Eur J Med Chem. 2019 May 17;177:316-337. doi: 10.1016/j.ejmech.2019.05.041. PMID:31158747<ref>PMID:31158747</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 6h4x" style="background-color:#fffaf0;"></div> | ||
[[Category: | == References == | ||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Bihan, Y V.Le]] | |||
[[Category: Montfort, R L.M van]] | |||
[[Category: Histone demethylase]] | |||
[[Category: Inhibitor]] | |||
[[Category: Oxidoreductase]] | |||
[[Category: Transcription]] |
Latest revision as of 08:32, 12 June 2019
Crystal structure of human KDM4A in complex with compound 17bCrystal structure of human KDM4A in complex with compound 17b
Structural highlights
Function[KDM4A_HUMAN] Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively.[1] [2] [3] Isoform 2: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain.[4] [5] [6] Publication Abstract from PubMedResidues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted. Additionally, conformational restriction of the flexible pyridopyrimidinone C8-substituent was investigated. These approaches yielded potent and cell-penetrant dual KDM4/5-subfamily inhibitors including 19a (KDM4A and KDM5B Ki=0.004 and 0.007muM, respectively). Compound cellular profiling in two orthogonal target engagement assays revealed a significant reduction from biochemical to cell-based activity across multiple analogues; this decrease was shown to be consistent with 2OG competition, and suggests that sub-nanomolar biochemical potency will be required with C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one compounds to achieve sub-micromolar target inhibition in cells. C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones: Studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays.,Le Bihan YV, Lanigan RM, Atrash B, McLaughlin MG, Velupillai S, Malcolm AG, England KS, Ruda GF, Mok NY, Tumber A, Tomlin K, Saville H, Shehu E, McAndrew C, Carmichael L, Bennett JM, Jeganathan F, Eve P, Donovan A, Hayes A, Wood F, Raynaud FI, Fedorov O, Brennan PE, Burke R, van Montfort RLM, Rossanese OW, Blagg J, Bavetsias V Eur J Med Chem. 2019 May 17;177:316-337. doi: 10.1016/j.ejmech.2019.05.041. PMID:31158747[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|