6dkp: Difference between revisions
New page: '''Unreleased structure''' The entry 6dkp is ON HOLD Authors: Hellman, L.M., Singh, N.K. Description: The complex between high-affinity TCR DMF5(alpha-D26Y,beta-L98W) and human Class I... |
No edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==The complex among DMF5(alpha-D26Y, alpha-Y50A,beta-L98W) TCR, human Class I MHC HLA-A2 and MART-1(26-35)(A27L) peptide== | ||
<StructureSection load='6dkp' size='340' side='right'caption='[[6dkp]], [[Resolution|resolution]] 2.97Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6dkp]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DKP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DKP FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.966Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dkp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dkp OCA], [https://pdbe.org/6dkp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dkp RCSB], [https://www.ebi.ac.uk/pdbsum/6dkp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dkp ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/HLAA_HUMAN HLAA_HUMAN] Selection of immunotherapy in solid cancer;Birdshot chorioretinopathy;Prediction of phenytoin or carbamazepine toxicity. Alleles A*02:01 and A*24:02 are associated with increased susceptibility to diabetes mellitus, insulin-dependent (IDDM) (PubMed:22245737, PubMed:18802479, PubMed:16731854, PubMed:22522618). In a glucose-dependent way, allele A*02:01 may aberrantly present the signal peptide of preproinsulin (ALWGPDPAAA) on the surface of pancreatic beta cells to autoreactive CD8-positive T cells, potentially driving T-cell mediated cytotoxicity in pancreatic islets (PubMed:22245737, PubMed:18802479). Allele A*24:02 may present the signal peptide of preproinsulin (LWMRLLPLL) and contribute to acute pancreatic beta-cell destruction and early onset of IDDM (PubMed:16731854, PubMed:22522618).<ref>PMID:16731854</ref> <ref>PMID:18802479</ref> <ref>PMID:22245737</ref> <ref>PMID:22522618</ref> Allele A*03:01 is associated with increased susceptibility to multiple sclerosis (MS), an autoimmune disease of the central nervous system (PubMed:10746785). May contribute to the initiation phase of the disease by presenting myelin PLP1 self-peptide (KLIETYFSK) to autoreactive CD8-positive T cells capable of initiating the first autoimmune attacks (PubMed:18953350).<ref>PMID:10746785</ref> <ref>PMID:18953350</ref> Allele A*26:01 is associated with increased susceptibility to Behcet disease (BD) in the Northeast Asian population. Especially in the HLA-B*51-negative BD populations, HLA-A*26 is significantly associated with the onset of BD.<ref>PMID:30872678</ref> Allele A*29:02 is associated with increased susceptibility to birdshot chorioretinopathy (BSCR). May aberrantly present retinal autoantigens and induce autoimmune uveitis.<ref>PMID:1728143</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/HLAA_HUMAN HLAA_HUMAN] Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:2456340, PubMed:2784196, PubMed:1402688, PubMed:7504010, PubMed:9862734, PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:7694806, PubMed:24395804, PubMed:28250417). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17189421, PubMed:20364150, PubMed:17079320, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734).<ref>PMID:10449296</ref> <ref>PMID:12138174</ref> <ref>PMID:12393434</ref> <ref>PMID:12796775</ref> <ref>PMID:1402688</ref> <ref>PMID:15893615</ref> <ref>PMID:17079320</ref> <ref>PMID:17189421</ref> <ref>PMID:18275829</ref> <ref>PMID:19542454</ref> <ref>PMID:19543285</ref> <ref>PMID:20364150</ref> <ref>PMID:21498667</ref> <ref>PMID:24192765</ref> <ref>PMID:24395804</ref> <ref>PMID:2456340</ref> <ref>PMID:25880248</ref> <ref>PMID:26929325</ref> <ref>PMID:27049119</ref> <ref>PMID:2784196</ref> <ref>PMID:28250417</ref> <ref>PMID:7504010</ref> <ref>PMID:7506728</ref> <ref>PMID:7679507</ref> <ref>PMID:7694806</ref> <ref>PMID:9862734</ref> Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:7504010, PubMed:17189421, PubMed:20364150, PubMed:25880248, PubMed:30530481, PubMed:19177349, PubMed:24395804, PubMed:26758806, PubMed:32887977). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413).<ref>PMID:1402688</ref> <ref>PMID:17189421</ref> <ref>PMID:18779413</ref> <ref>PMID:19177349</ref> <ref>PMID:20364150</ref> <ref>PMID:24395804</ref> <ref>PMID:25880248</ref> <ref>PMID:26758806</ref> <ref>PMID:30530481</ref> <ref>PMID:7504010</ref> Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors.<ref>PMID:11502003</ref> <ref>PMID:12138174</ref> <ref>PMID:12796775</ref> <ref>PMID:17079320</ref> <ref>PMID:18275829</ref> <ref>PMID:19542454</ref> <ref>PMID:20619457</ref> <ref>PMID:22245737</ref> <ref>PMID:26929325</ref> <ref>PMID:2784196</ref> <ref>PMID:28250417</ref> <ref>PMID:7694806</ref> <ref>PMID:7935798</ref> <ref>PMID:8630735</ref> <ref>PMID:8805302</ref> <ref>PMID:8906788</ref> <ref>PMID:9177355</ref> Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:7504010, PubMed:7679507, PubMed:9862734, PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119).<ref>PMID:19543285</ref> <ref>PMID:21943705</ref> <ref>PMID:2456340</ref> <ref>PMID:27049119</ref> <ref>PMID:7504010</ref> <ref>PMID:7679507</ref> <ref>PMID:9862734</ref> Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977).<ref>PMID:10449296</ref> <ref>PMID:32887977</ref> Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.<ref>PMID:17182537</ref> Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:9047241, PubMed:12393434, PubMed:24192765, PubMed:20844028). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829).<ref>PMID:12393434</ref> <ref>PMID:17182537</ref> <ref>PMID:18502829</ref> <ref>PMID:20844028</ref> <ref>PMID:24192765</ref> <ref>PMID:9047241</ref> Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus.<ref>PMID:15893615</ref> Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus.<ref>PMID:8622959</ref> Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.<ref>PMID:17182537</ref> Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor.<ref>PMID:1448153</ref> <ref>PMID:1448154</ref> <ref>PMID:2784196</ref> Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.<ref>PMID:21498667</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
T cell receptors (TCRs) have emerged as a new class of immunological therapeutics. However, though antigen specificity is a hallmark of adaptive immunity, TCRs themselves do not possess the high specificity of monoclonal antibodies. Although a necessary function of T cell biology, the resulting cross-reactivity presents a significant challenge for TCR-based therapeutic development, as it creates the potential for off-target recognition and immune toxicity. Efforts to enhance TCR specificity by mimicking the antibody maturation process and enhancing affinity can inadvertently exacerbate TCR cross-reactivity. Here we demonstrate this concern by showing that even peptide-targeted mutations in the TCR can introduce new reactivities against peptides that bear similarity to the original target. To counteract this, we explored a novel structure-guided approach for enhancing TCR specificity independent of affinity. Tested with the MART-1-specific TCR DMF5, our approach had a small but discernible impact on cross-reactivity toward MART-1 homologs yet was able to eliminate DMF5 cross-recognition of more divergent, unrelated epitopes. Our study provides a proof of principle for the use of advanced structure-guided design techniques for improving TCR specificity, and it suggests new ways forward for enhancing TCRs for therapeutic use. | |||
Improving T Cell Receptor On-Target Specificity via Structure-Guided Design.,Hellman LM, Foley KC, Singh NK, Alonso JA, Riley TP, Devlin JR, Ayres CM, Keller GLJ, Zhang Y, Vander Kooi CW, Nishimura MI, Baker BM Mol Ther. 2019 Feb 6;27(2):300-313. doi: 10.1016/j.ymthe.2018.12.010. Epub 2018, Dec 14. PMID:30617019<ref>PMID:30617019</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: Hellman | <div class="pdbe-citations 6dkp" style="background-color:#fffaf0;"></div> | ||
[[Category: Singh | |||
==See Also== | |||
*[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | |||
*[[MHC 3D structures|MHC 3D structures]] | |||
*[[MHC I 3D structures|MHC I 3D structures]] | |||
*[[T-cell receptor 3D structures|T-cell receptor 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Hellman LM]] | |||
[[Category: Singh NK]] |
Latest revision as of 09:08, 11 October 2023
The complex among DMF5(alpha-D26Y, alpha-Y50A,beta-L98W) TCR, human Class I MHC HLA-A2 and MART-1(26-35)(A27L) peptideThe complex among DMF5(alpha-D26Y, alpha-Y50A,beta-L98W) TCR, human Class I MHC HLA-A2 and MART-1(26-35)(A27L) peptide
Structural highlights
DiseaseHLAA_HUMAN Selection of immunotherapy in solid cancer;Birdshot chorioretinopathy;Prediction of phenytoin or carbamazepine toxicity. Alleles A*02:01 and A*24:02 are associated with increased susceptibility to diabetes mellitus, insulin-dependent (IDDM) (PubMed:22245737, PubMed:18802479, PubMed:16731854, PubMed:22522618). In a glucose-dependent way, allele A*02:01 may aberrantly present the signal peptide of preproinsulin (ALWGPDPAAA) on the surface of pancreatic beta cells to autoreactive CD8-positive T cells, potentially driving T-cell mediated cytotoxicity in pancreatic islets (PubMed:22245737, PubMed:18802479). Allele A*24:02 may present the signal peptide of preproinsulin (LWMRLLPLL) and contribute to acute pancreatic beta-cell destruction and early onset of IDDM (PubMed:16731854, PubMed:22522618).[1] [2] [3] [4] Allele A*03:01 is associated with increased susceptibility to multiple sclerosis (MS), an autoimmune disease of the central nervous system (PubMed:10746785). May contribute to the initiation phase of the disease by presenting myelin PLP1 self-peptide (KLIETYFSK) to autoreactive CD8-positive T cells capable of initiating the first autoimmune attacks (PubMed:18953350).[5] [6] Allele A*26:01 is associated with increased susceptibility to Behcet disease (BD) in the Northeast Asian population. Especially in the HLA-B*51-negative BD populations, HLA-A*26 is significantly associated with the onset of BD.[7] Allele A*29:02 is associated with increased susceptibility to birdshot chorioretinopathy (BSCR). May aberrantly present retinal autoantigens and induce autoimmune uveitis.[8] FunctionHLAA_HUMAN Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-A-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells (PubMed:2456340, PubMed:2784196, PubMed:1402688, PubMed:7504010, PubMed:9862734, PubMed:10449296, PubMed:12138174, PubMed:12393434, PubMed:15893615, PubMed:17189421, PubMed:19543285, PubMed:21498667, PubMed:24192765, PubMed:7694806, PubMed:24395804, PubMed:28250417). May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity (PubMed:25880248, PubMed:7506728, PubMed:7679507). Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells (PubMed:12796775, PubMed:18275829, PubMed:19542454, PubMed:28250417). Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via IFNG-induced immunoproteasome or via endopeptidase IDE/insulin-degrading enzyme (PubMed:17189421, PubMed:20364150, PubMed:17079320, PubMed:26929325, PubMed:27049119). Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 (PubMed:7504010, PubMed:9862734).[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] Allele A*01:01: Presents a restricted peptide repertoire including viral epitopes derived from IAV NP/nucleoprotein (CTELKLSDY), IAV PB1/polymerase basic protein 1 (VSDGGPNLY), HAdV-11 capsid L3/hexon protein (LTDLGQNLLY), SARS-CoV-2 3a/ORF3a (FTSDYYQLY) as well as tumor peptide antigens including MAGE1 (EADPTGHSY), MAGEA3 (EVDPIGHLY) and WT1 (TSEKRPFMCAY), all having in common a canonical motif with a negatively charged Asp or Glu residue at position 3 and a Tyr anchor residue at the C-terminus (PubMed:1402688, PubMed:7504010, PubMed:17189421, PubMed:20364150, PubMed:25880248, PubMed:30530481, PubMed:19177349, PubMed:24395804, PubMed:26758806, PubMed:32887977). A number of HLA-A*01:01-restricted peptides carry a post-translational modification with oxidation and N-terminal acetylation being the most frequent (PubMed:25880248). Fails to present highly immunogenic peptides from the EBV latent antigens (PubMed:18779413).[35] [36] [37] [38] [39] [40] [41] [42] [43] [44] Allele A*02:01: A major allele in human populations, presents immunodominant viral epitopes derived from IAV M/matrix protein 1 (GILGFVFTL), HIV-1 env (TLTSCNTSV), HIV-1 gag-pol (ILKEPVHGV), HTLV-1 Tax (LLFGYPVYV), HBV C/core antigen (FLPSDFFPS), HCMV UL83/pp65 (NLVPMVATV) as well as tumor peptide antigens including MAGEA4 (GVYDGREHTV), WT1 (RMFPNAPYL) and CTAG1A/NY-ESO-1 (SLLMWITQC), all having in common hydrophobic amino acids at position 2 and at the C-terminal anchors.[45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] Allele A*03:01: Presents viral epitopes derived from IAV NP (ILRGSVAHK), HIV-1 nef (QVPLRPMTYK), HIV-1 gag-pol (AIFQSSMTK), SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) as well as tumor peptide antigens including PMEL (LIYRRRLMK), NODAL (HAYIQSLLK), TRP-2 (RMYNMVPFF), all having in common hydrophobic amino acids at position 2 and Lys or Arg anchor residues at the C-terminus (PubMed:7504010, PubMed:7679507, PubMed:9862734, PubMed:19543285, PubMed:21943705, PubMed:2456340, PubMed:32887977). May also display spliced peptides resulting from the ligation of two separate proteasomal cleavage products that are not contiguous in the parental protein (PubMed:27049119).[62] [63] [64] [65] [66] [67] [68] Allele A*11:01: Presents several immunodominant epitopes derived from HIV-1 gag-pol and HHV-4 EBNA4, containing the peptide motif with Val, Ile, Thr, Leu, Tyr or Phe at position 2 and Lys anchor residue at the C-terminus. Important in the control of HIV-1, EBV and HBV infections (PubMed:10449296). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (KTFPPTEPK) (PubMed:32887977).[69] [70] Allele A*23:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.[71] Allele A*24:02: Presents viral epitopes derived from HIV-1 nef (RYPLTFGWCF), EBV lytic- and latent-cycle antigens BRLF1 (TYPVLEEMF), BMLF1 (DYNFVKQLF) and LMP2 (IYVLVMLVL), SARS-CoV nucleocapsid/N (QFKDNVILL), as well as tumor peptide antigens including PRAME (LYVDSLFFL), all sharing a common signature motif, namely an aromatic residue Tyr or Phe at position 2 and a nonhydrophobic anchor residue Phe, Leu or Iso at the C-terminus (PubMed:9047241, PubMed:12393434, PubMed:24192765, PubMed:20844028). Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response (PubMed:17182537, PubMed:18502829).[72] [73] [74] [75] [76] [77] Allele A*26:01: Presents several epitopes derived from HIV-1 gag-pol (EVIPMFSAL, ETKLGKAGY) and env (LVSDGGPNLY), carrying as anchor residues preferentially Glu at position 1, Val or Thr at position 2 and Tyr at the C-terminus.[78] Allele A*29:02: Presents peptides having a common motif, namely a Glu residue at position 2 and Tyr or Leu anchor residues at the C-terminus.[79] Allele A*32:01: Interacts with natural killer (NK) cell receptor KIR3DL1 and may contribute to functional maturation of NK cells and self-nonself discrimination during innate immune response.[80] Allele A*68:01: Presents viral epitopes derived from IAV NP (KTGGPIYKR) and HIV-1 tat (ITKGLGISYGR), having a common signature motif namely, Val or Thr at position 2 and positively charged residues Arg or Lys at the C-terminal anchor.[81] [82] [83] Allele A*74:01: Presents immunodominant HIV-1 epitopes derived from gag-pol (GQMVHQAISPR, QIYPGIKVR) and rev (RQIHSISER), carrying an aliphatic residue at position 2 and Arg anchor residue at the C-terminus. May contribute to viral load control in chronic HIV-1 infection.[84] Publication Abstract from PubMedT cell receptors (TCRs) have emerged as a new class of immunological therapeutics. However, though antigen specificity is a hallmark of adaptive immunity, TCRs themselves do not possess the high specificity of monoclonal antibodies. Although a necessary function of T cell biology, the resulting cross-reactivity presents a significant challenge for TCR-based therapeutic development, as it creates the potential for off-target recognition and immune toxicity. Efforts to enhance TCR specificity by mimicking the antibody maturation process and enhancing affinity can inadvertently exacerbate TCR cross-reactivity. Here we demonstrate this concern by showing that even peptide-targeted mutations in the TCR can introduce new reactivities against peptides that bear similarity to the original target. To counteract this, we explored a novel structure-guided approach for enhancing TCR specificity independent of affinity. Tested with the MART-1-specific TCR DMF5, our approach had a small but discernible impact on cross-reactivity toward MART-1 homologs yet was able to eliminate DMF5 cross-recognition of more divergent, unrelated epitopes. Our study provides a proof of principle for the use of advanced structure-guided design techniques for improving TCR specificity, and it suggests new ways forward for enhancing TCRs for therapeutic use. Improving T Cell Receptor On-Target Specificity via Structure-Guided Design.,Hellman LM, Foley KC, Singh NK, Alonso JA, Riley TP, Devlin JR, Ayres CM, Keller GLJ, Zhang Y, Vander Kooi CW, Nishimura MI, Baker BM Mol Ther. 2019 Feb 6;27(2):300-313. doi: 10.1016/j.ymthe.2018.12.010. Epub 2018, Dec 14. PMID:30617019[85] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|
|