6cmo: Difference between revisions
m Protected "6cmo" [edit=sysop:move=sysop] |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The entry | ==Rhodopsin-Gi complex== | ||
<SX load='6cmo' size='340' side='right' viewer='molstar' caption='[[6cmo]], [[Resolution|resolution]] 4.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6cmo]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus], [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli], [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens], [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CMO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CMO FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.5Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cmo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cmo OCA], [https://pdbe.org/6cmo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cmo RCSB], [https://www.ebi.ac.uk/pdbsum/6cmo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cmo ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/OPSD_HUMAN OPSD_HUMAN] Congenital stationary night blindness;Retinitis punctata albescens;Retinitis pigmentosa. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/C562_ECOLX C562_ECOLX] Electron-transport protein of unknown function.[https://www.uniprot.org/uniprot/OPSD_HUMAN OPSD_HUMAN] Photoreceptor required for image-forming vision at low light intensity (PubMed:7846071, PubMed:8107847). Required for photoreceptor cell viability after birth (PubMed:12566452, PubMed:2215617). Light-induced isomerization of the chromophore 11-cis-retinal to all-trans-retinal triggers a conformational change that activates signaling via G-proteins (PubMed:26200343, PubMed:28524165, PubMed:28753425, PubMed:8107847). Subsequent receptor phosphorylation mediates displacement of the bound G-protein alpha subunit by the arrestin SAG and terminates signaling (PubMed:26200343, PubMed:28524165).<ref>PMID:12566452</ref> <ref>PMID:2215617</ref> <ref>PMID:26200343</ref> <ref>PMID:28753425</ref> <ref>PMID:7846071</ref> <ref>PMID:8107847</ref> <ref>PMID:28524165</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi alpha-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the beta2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors. | |||
Cryo-EM structure of human rhodopsin bound to an inhibitory G protein.,Kang Y, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N, Dutka P, Zhou XE, Bartesaghi A, Erramilli S, Morizumi T, Gu X, Yin Y, Liu P, Jiang Y, Meng X, Zhao G, Melcher K, Ernst OP, Kossiakoff AA, Subramaniam S, Xu HE Nature. 2018 Jun;558(7711):553-558. doi: 10.1038/s41586-018-0215-y. Epub 2018 Jun, 13. PMID:29899450<ref>PMID:29899450</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6cmo" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] | |||
*[[Transducin 3D structures|Transducin 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</SX> | |||
[[Category: Bos taurus]] | |||
[[Category: Escherichia coli]] | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Rattus norvegicus]] | |||
[[Category: Synthetic construct]] | |||
[[Category: Bartesaghi A]] | |||
[[Category: Dutka P]] | |||
[[Category: Earnst OP]] | |||
[[Category: Erramilli S]] | |||
[[Category: Gu X]] | |||
[[Category: Jiang Y]] | |||
[[Category: Kang Y]] | |||
[[Category: Kossiakoff AA]] | |||
[[Category: Kuybeda O]] | |||
[[Category: Liu P]] | |||
[[Category: Melcher K]] | |||
[[Category: Meng X]] | |||
[[Category: Morizumi T]] | |||
[[Category: Mukherjee S]] | |||
[[Category: Subramaniam S]] | |||
[[Category: Van Eps N]] | |||
[[Category: Xu HE]] | |||
[[Category: Yin Y]] | |||
[[Category: Zhao G]] | |||
[[Category: Zhou XE]] | |||
[[Category: De Waal PW]] |