6c7r: Difference between revisions
m Protected "6c7r" [edit=sysop:move=sysop] |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==BRD4 BD1 in complex with compound CF53== | ||
<StructureSection load='6c7r' size='340' side='right'caption='[[6c7r]], [[Resolution|resolution]] 1.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6c7r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6C7R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6C7R FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EO4:N-(3-cyclopropyl-1-methyl-1H-pyrazol-5-yl)-7-(3,5-dimethyl-1,2-oxazol-4-yl)-6-methoxy-2-methyl-9H-pyrimido[4,5-b]indol-4-amine'>EO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6c7r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6c7r OCA], [https://pdbe.org/6c7r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6c7r RCSB], [https://www.ebi.ac.uk/pdbsum/6c7r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6c7r ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/BRD4_HUMAN BRD4_HUMAN] Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.<ref>PMID:12543779</ref> <ref>PMID:11733348</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/BRD4_HUMAN BRD4_HUMAN] Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
We report the structure-based discovery of CF53 (28) as a highly potent and orally active inhibitor of bromodomain and extra-terminal (BET) proteins. By the incorporation of a NH-pyrazole group into the 9H-pyrimido[4,5- b]indole core, we identified a series of compounds that bind to BRD4 BD1 protein with Ki values of <1 nM and achieve low nanomolar potencies in the cell growth inhibition of leukemia and breast cancer cells. The most-promising compound, CF53, possesses excellent oral pharmacokinetic properties and achieves significant antitumor activity in both triple-negative breast cancer and acute leukemia xenograft models in mice. Determination of the co-crystal structure of CF53 with the BRD4 BD1 protein provides a structural basis for its high binding affinity to BET proteins. CF53 is very selective over non-BET bromodomain-containing proteins. These data establish CF53 as a potent, selective, and orally active BET inhibitor, which warrants further evaluation for advanced preclinical development. | |||
Structure-Based Discovery of CF53 as a Potent and Orally Bioavailable Bromodomain and Extra-Terminal (BET) Bromodomain Inhibitor.,Zhao Y, Zhou B, Bai L, Liu L, Yang CY, Meagher JL, Stuckey JA, McEachern D, Przybranowski S, Wang M, Ran X, Aguilar A, Hu Y, Kampf JW, Li X, Zhao T, Li S, Wen B, Sun D, Wang S J Med Chem. 2018 Jul 26;61(14):6110-6120. doi: 10.1021/acs.jmedchem.8b00483. Epub, 2018 Jul 17. PMID:30015487<ref>PMID:30015487</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 6c7r" style="background-color:#fffaf0;"></div> | ||
[[Category: | |||
==See Also== | |||
*[[Bromodomain-containing protein 3D structures|Bromodomain-containing protein 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Meagher JL]] | |||
[[Category: Stuckey JA]] |
Latest revision as of 17:57, 4 October 2023
BRD4 BD1 in complex with compound CF53BRD4 BD1 in complex with compound CF53
Structural highlights
DiseaseBRD4_HUMAN Note=A chromosomal aberration involving BRD4 is found in a rare, aggressive, and lethal carcinoma arising in midline organs of young people. Translocation t(15;19)(q14;p13) with NUT which produces a BRD4-NUT fusion protein.[1] [2] FunctionBRD4_HUMAN Plays a role in a process governing chromosomal dynamics during mitosis (By similarity). Publication Abstract from PubMedWe report the structure-based discovery of CF53 (28) as a highly potent and orally active inhibitor of bromodomain and extra-terminal (BET) proteins. By the incorporation of a NH-pyrazole group into the 9H-pyrimido[4,5- b]indole core, we identified a series of compounds that bind to BRD4 BD1 protein with Ki values of <1 nM and achieve low nanomolar potencies in the cell growth inhibition of leukemia and breast cancer cells. The most-promising compound, CF53, possesses excellent oral pharmacokinetic properties and achieves significant antitumor activity in both triple-negative breast cancer and acute leukemia xenograft models in mice. Determination of the co-crystal structure of CF53 with the BRD4 BD1 protein provides a structural basis for its high binding affinity to BET proteins. CF53 is very selective over non-BET bromodomain-containing proteins. These data establish CF53 as a potent, selective, and orally active BET inhibitor, which warrants further evaluation for advanced preclinical development. Structure-Based Discovery of CF53 as a Potent and Orally Bioavailable Bromodomain and Extra-Terminal (BET) Bromodomain Inhibitor.,Zhao Y, Zhou B, Bai L, Liu L, Yang CY, Meagher JL, Stuckey JA, McEachern D, Przybranowski S, Wang M, Ran X, Aguilar A, Hu Y, Kampf JW, Li X, Zhao T, Li S, Wen B, Sun D, Wang S J Med Chem. 2018 Jul 26;61(14):6110-6120. doi: 10.1021/acs.jmedchem.8b00483. Epub, 2018 Jul 17. PMID:30015487[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|