6evf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='6evf' size='340' side='right' caption='[[6evf]], [[Resolution|resolution]] 2.06&Aring;' scene=''>
<StructureSection load='6evf' size='340' side='right' caption='[[6evf]], [[Resolution|resolution]] 2.06&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[6evf]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EVF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EVF FirstGlance]. <br>
<table><tr><td colspan='2'>[[6evf]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EVF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EVF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4LU:1-DEOXY-5-O-PHOSPHONO-1-(3,3,4,5-TETRAMETHYL-9,11-DIOXO-2,3,8,9,10,11-HEXAHYDRO-7H-QUINOLINO[1,8-FG]PTERIDIN-12-IUM-7-YL)-D-RIBITOL'>4LU</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4LU:1-DEOXY-5-O-PHOSPHONO-1-(3,3,4,5-TETRAMETHYL-9,11-DIOXO-2,3,8,9,10,11-HEXAHYDRO-7H-QUINOLINO[1,8-FG]PTERIDIN-12-IUM-7-YL)-D-RIBITOL'>4LU</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FDC1, YDR539W, D3703.2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phenacrylate_decarboxylase Phenacrylate decarboxylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.1.102 4.1.1.102] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phenacrylate_decarboxylase Phenacrylate decarboxylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.1.1.102 4.1.1.102] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6evf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6evf OCA], [http://pdbe.org/6evf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6evf RCSB], [http://www.ebi.ac.uk/pdbsum/6evf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6evf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6evf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6evf OCA], [http://pdbe.org/6evf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6evf RCSB], [http://www.ebi.ac.uk/pdbsum/6evf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6evf ProSAT]</span></td></tr>
Line 10: Line 11:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/FDC1_YEAST FDC1_YEAST]] Required for the decarboxylation of phenylacrylic acids like ferulic acid, p-coumaric acid or cinnamic acid. Not essential for ubiquinone synthesis.<ref>PMID:20471595</ref>   
[[http://www.uniprot.org/uniprot/FDC1_YEAST FDC1_YEAST]] Required for the decarboxylation of phenylacrylic acids like ferulic acid, p-coumaric acid or cinnamic acid. Not essential for ubiquinone synthesis.<ref>PMID:20471595</ref>   
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The UbiD family of reversible decarboxylases act on aromatic, heteroaromatic, and unsaturated aliphatic acids and utilize a prenylated flavin mononucleotide (prFMN) as cofactor, bound adjacent to a conserved Glu-ArgGlu/Asp ionic network in the enzyme's active site. It is proposed that UbiD activation requires oxidative maturation of the cofactor, for which two distinct isomers, prFMN(ketimine) and prFMN(iminium) have been observed. It also has been suggested that only the prFMN(iminium) form is relevant to catalysis, which requires transient cycloaddition between substrate and cofactor. Using Aspergillus niger Fdc1 as a model system, we reveal isomerization of prFMN(iminium) to prFMN(ketimine) is a light-dependent process that is largely independent of the Glu277-Arg173-Glu282 network and accompanied by irreversible loss of activity. On the other hand, efficient catalysis was highly dependent on an intact Glu-Ar-Glu network, as only Glu to Asp substitutions retain activity. Surprisingly, oxidative maturation to form the prFMN(iminium) species is severely affected only for the R173A variant. In summary, the unusual irreversible isomerization of prFMN is light dependent and likely proceeds via high-energy intermediates, but is independent of the Glu-Arg-Glu network. Our results from mutagenesis, crystallographic, spectroscopic and kinetic experiments indicate a clear role for the Glu-Arg-Glu network in both catalysis and oxidative maturation.
The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerisation and catalysis.,Bailey SS, Payne KAP, Fisher K, Marshall SA, Cliff MJ, Spiess R, Parker DA, Rigby SE, Leys D J Biol Chem. 2017 Dec 19. pii: RA117.000881. doi: 10.1074/jbc.RA117.000881. PMID:29259125<ref>PMID:29259125</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 6evf" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Baker's yeast]]
[[Category: Phenacrylate decarboxylase]]
[[Category: Phenacrylate decarboxylase]]
[[Category: Bailey, S S]]
[[Category: Bailey, S S]]

Latest revision as of 09:06, 3 January 2018

Structure of E285D S. cerevisiae Fdc1 with prFMN in the hydroxylated formStructure of E285D S. cerevisiae Fdc1 with prFMN in the hydroxylated form

Structural highlights

6evf is a 4 chain structure with sequence from Baker's yeast. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:FDC1, YDR539W, D3703.2 (Baker's yeast)
Activity:Phenacrylate decarboxylase, with EC number 4.1.1.102
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[FDC1_YEAST] Required for the decarboxylation of phenylacrylic acids like ferulic acid, p-coumaric acid or cinnamic acid. Not essential for ubiquinone synthesis.[1]

Publication Abstract from PubMed

The UbiD family of reversible decarboxylases act on aromatic, heteroaromatic, and unsaturated aliphatic acids and utilize a prenylated flavin mononucleotide (prFMN) as cofactor, bound adjacent to a conserved Glu-ArgGlu/Asp ionic network in the enzyme's active site. It is proposed that UbiD activation requires oxidative maturation of the cofactor, for which two distinct isomers, prFMN(ketimine) and prFMN(iminium) have been observed. It also has been suggested that only the prFMN(iminium) form is relevant to catalysis, which requires transient cycloaddition between substrate and cofactor. Using Aspergillus niger Fdc1 as a model system, we reveal isomerization of prFMN(iminium) to prFMN(ketimine) is a light-dependent process that is largely independent of the Glu277-Arg173-Glu282 network and accompanied by irreversible loss of activity. On the other hand, efficient catalysis was highly dependent on an intact Glu-Ar-Glu network, as only Glu to Asp substitutions retain activity. Surprisingly, oxidative maturation to form the prFMN(iminium) species is severely affected only for the R173A variant. In summary, the unusual irreversible isomerization of prFMN is light dependent and likely proceeds via high-energy intermediates, but is independent of the Glu-Arg-Glu network. Our results from mutagenesis, crystallographic, spectroscopic and kinetic experiments indicate a clear role for the Glu-Arg-Glu network in both catalysis and oxidative maturation.

The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerisation and catalysis.,Bailey SS, Payne KAP, Fisher K, Marshall SA, Cliff MJ, Spiess R, Parker DA, Rigby SE, Leys D J Biol Chem. 2017 Dec 19. pii: RA117.000881. doi: 10.1074/jbc.RA117.000881. PMID:29259125[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng. 2010 Jun;109(6):564-9. doi: 10.1016/j.jbiosc.2009.11.011. Epub, 2009 Dec 16. PMID:20471595 doi:http://dx.doi.org/10.1016/j.jbiosc.2009.11.011
  2. Bailey SS, Payne KAP, Fisher K, Marshall SA, Cliff MJ, Spiess R, Parker DA, Rigby SE, Leys D. The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerisation and catalysis. J Biol Chem. 2017 Dec 19. pii: RA117.000881. doi: 10.1074/jbc.RA117.000881. PMID:29259125 doi:http://dx.doi.org/10.1074/jbc.RA117.000881

6evf, resolution 2.06Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA