6f7h: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "6f7h" [edit=sysop:move=sysop]
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 6f7h is ON HOLD
==Crystal structure of human AQP10==
<StructureSection load='6f7h' size='340' side='right'caption='[[6f7h]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[6f7h]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6F7H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6F7H FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.304&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BNG:B-NONYLGLUCOSIDE'>BNG</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6f7h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6f7h OCA], [https://pdbe.org/6f7h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6f7h RCSB], [https://www.ebi.ac.uk/pdbsum/6f7h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6f7h ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/AQP10_HUMAN AQP10_HUMAN] Water channel that mediates water transport across cell membranes irrespective of the cytosolic pH (PubMed:12084581, PubMed:21733844, PubMed:23382902, PubMed:30420639). The channel is permeable to glycerol, especially when the cytosolic pH is acidified (PubMed:21733844, PubMed:30420639). Contributes to adipocyte water and glycerol permeability, and may thereby contribute to the utilization of glycerol derived from phospholipid degradation (PubMed:23382902). May contribute to water transport in the intestine (Probable).<ref>PMID:12084581</ref> <ref>PMID:21733844</ref> <ref>PMID:23382902</ref> <ref>PMID:30420639</ref> <ref>PMID:11573934</ref> <ref>PMID:12084581</ref> <ref>PMID:15221416</ref>  Water channel that mediates water transport across cell membranes, but that is not permeable to glycerol.<ref>PMID:11573934</ref>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 A resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.


Authors: Kaituo, W., Pontus, G.
Human adipose glycerol flux is regulated by a pH gate in AQP10.,Gotfryd K, Mosca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Helix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P Nat Commun. 2018 Nov 12;9(1):4749. doi: 10.1038/s41467-018-07176-z. PMID:30420639<ref>PMID:30420639</ref>


Description: Crystal structure of human AQP10
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Kaituo, W]]
<div class="pdbe-citations 6f7h" style="background-color:#fffaf0;"></div>
[[Category: Pontus, G]]
 
==See Also==
*[[Aquaporin 3D structures|Aquaporin 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Gotfryd K]]
[[Category: Gourdon P]]
[[Category: Missel JW]]
[[Category: Pedersen PA]]
[[Category: Wang K]]

Latest revision as of 15:25, 9 May 2024

Crystal structure of human AQP10Crystal structure of human AQP10

Structural highlights

6f7h is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.304Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AQP10_HUMAN Water channel that mediates water transport across cell membranes irrespective of the cytosolic pH (PubMed:12084581, PubMed:21733844, PubMed:23382902, PubMed:30420639). The channel is permeable to glycerol, especially when the cytosolic pH is acidified (PubMed:21733844, PubMed:30420639). Contributes to adipocyte water and glycerol permeability, and may thereby contribute to the utilization of glycerol derived from phospholipid degradation (PubMed:23382902). May contribute to water transport in the intestine (Probable).[1] [2] [3] [4] [5] [6] [7] Water channel that mediates water transport across cell membranes, but that is not permeable to glycerol.[8]

Publication Abstract from PubMed

Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 A resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.

Human adipose glycerol flux is regulated by a pH gate in AQP10.,Gotfryd K, Mosca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Helix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P Nat Commun. 2018 Nov 12;9(1):4749. doi: 10.1038/s41467-018-07176-z. PMID:30420639[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M. Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta. 2002 Jul 19;1576(3):335-40. PMID:12084581 doi:10.1016/s0167-4781(02)00393-7
  2. Öberg F, Sjöhamn J, Fischer G, Moberg A, Pedersen A, Neutze R, Hedfalk K. Glycosylation increases the thermostability of human aquaporin 10 protein. J Biol Chem. 2011 Sep 9;286(36):31915-23. PMID:21733844 doi:10.1074/jbc.M111.242677
  3. Laforenza U, Scaffino MF, Gastaldi G. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes. PLoS One. 2013;8(1):e54474. PMID:23382902 doi:10.1371/journal.pone.0054474
  4. Gotfryd K, Mosca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Helix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun. 2018 Nov 12;9(1):4749. doi: 10.1038/s41467-018-07176-z. PMID:30420639 doi:http://dx.doi.org/10.1038/s41467-018-07176-z
  5. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T. Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun. 2001 Oct 5;287(4):814-9. PMID:11573934 doi:10.1006/bbrc.2001.5661
  6. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M. Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta. 2002 Jul 19;1576(3):335-40. PMID:12084581 doi:10.1016/s0167-4781(02)00393-7
  7. Mobasheri A, Shakibaei M, Marples D. Immunohistochemical localization of aquaporin 10 in the apical membranes of the human ileum: a potential pathway for luminal water and small solute absorption. Histochem Cell Biol. 2004 Jun;121(6):463-71. PMID:15221416 doi:10.1007/s00418-004-0657-1
  8. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T. Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun. 2001 Oct 5;287(4):814-9. PMID:11573934 doi:10.1006/bbrc.2001.5661
  9. Gotfryd K, Mosca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Helix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun. 2018 Nov 12;9(1):4749. doi: 10.1038/s41467-018-07176-z. PMID:30420639 doi:http://dx.doi.org/10.1038/s41467-018-07176-z

6f7h, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA