1ima: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==STRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATES== | ==STRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATES== | ||
<StructureSection load='1ima' size='340' side='right' caption='[[1ima]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='1ima' size='340' side='right'caption='[[1ima]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1ima]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1ima]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IMA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IMA FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GD:GADOLINIUM+ATOM'>GD</scene>, <scene name='pdbligand=IPD:D-MYO-INOSITOL-1-PHOSPHATE'>IPD</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ima FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ima OCA], [https://pdbe.org/1ima PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ima RCSB], [https://www.ebi.ac.uk/pdbsum/1ima PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ima ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/IMPA1_HUMAN IMPA1_HUMAN] Responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain. Can use myo-inositol monophosphates, myo-inositol 1,3-diphosphate, myo-inositol 1,4-diphosphate, scyllo-inositol-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates.<ref>PMID:17068342</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/im/1ima_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/im/1ima_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 30: | Line 29: | ||
</div> | </div> | ||
<div class="pdbe-citations 1ima" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 1ima" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Inositol monophosphatase 3D structures|Inositol monophosphatase 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Bone | [[Category: Bone R]] | ||
Latest revision as of 03:05, 21 November 2024
STRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATESSTRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATES
Structural highlights
FunctionIMPA1_HUMAN Responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain. Can use myo-inositol monophosphates, myo-inositol 1,3-diphosphate, myo-inositol 1,4-diphosphate, scyllo-inositol-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structures of ternary complexes of human inositol monophosphatase with inhibitory Gd3+ and either D- or L-myo-inositol 1-phosphate have been determined to 2.2-2.3 A resolution using X-ray crystallography. Substrate and metal are bound identically in each active site of the phosphatase dimer. The substrate is present at full occupancy, while the metal is present at only 35% occupancy, suggesting that Li+ from the crystallization solvent partially replaces Gd3+ upon substrate binding. The phosphate groups of both substrates interact with the phosphatase in the same manner with one phosphate oxygen bound to the octahedrally coordinated active site metal and another oxygen forming hydrogen bonds with the amide groups of residues 94 and 95. The active site orientations of the inositol rings of D- and L-myo-inositol 1-phosphate differ by rotation of nearly 60 degrees about the phosphate ester bond. Each substrate utilizes the same key residues (Asp 93, Ala 196, Glu 213, and Asp 220) to form the same number of hydrogen bonds with the enzyme. Mutagenesis experiments confirm the interaction of Glu 213 with the inositol ring and suggest that interactions with Ser 165 may develop during the transition state. The structural data suggest that the active site nucleophile is a metal-bound water that is activated by interaction with Glu 70 and Thr 95. Expulsion of the ester oxygen appears to be promoted by three aspartate residues acting together (90, 93, and 220), either to donate a proton to the leaving group or to form another metal binding site from which a second Mg2+ coordinates the leaving group during the transition state. Structural analysis of inositol monophosphatase complexes with substrates.,Bone R, Frank L, Springer JP, Pollack SJ, Osborne SA, Atack JR, Knowles MR, McAllister G, Ragan CI, Broughton HB, et al. Biochemistry. 1994 Aug 16;33(32):9460-7. PMID:8068620[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|