5du0: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of rsFolder in the non-fluorescent off-state== | ==Crystal structure of rsFolder in the non-fluorescent off-state== | ||
<StructureSection load='5du0' size='340' side='right' caption='[[5du0]], [[Resolution|resolution]] 2.35Å' scene=''> | <StructureSection load='5du0' size='340' side='right'caption='[[5du0]], [[Resolution|resolution]] 2.35Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5du0]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[5du0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DU0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5DU0 FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PIA:[(4Z)-2-[(1S)-1-AMINOETHYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL]ACETIC+ACID'>PIA</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5du0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5du0 OCA], [https://pdbe.org/5du0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5du0 RCSB], [https://www.ebi.ac.uk/pdbsum/5du0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5du0 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 19: | Line 19: | ||
</div> | </div> | ||
<div class="pdbe-citations 5du0" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 5du0" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] | |||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Aequorea victoria]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Adam V]] | ||
[[Category: | [[Category: Colletier JP]] | ||
[[Category: | [[Category: El Khatib M]] | ||
Latest revision as of 00:59, 29 June 2023
Crystal structure of rsFolder in the non-fluorescent off-stateCrystal structure of rsFolder in the non-fluorescent off-state
Structural highlights
FunctionGFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. Publication Abstract from PubMedPhototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm.,El Khatib M, Martins A, Bourgeois D, Colletier JP, Adam V Sci Rep. 2016 Jan 6;6:18459. doi: 10.1038/srep18459. PMID:26732634[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|