5dif: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:


==Crystal Structure of CPEB4 NES Peptide in complex with CRM1-Ran-RanBP1==
==Crystal Structure of CPEB4 NES Peptide in complex with CRM1-Ran-RanBP1==
<StructureSection load='5dif' size='340' side='right' caption='[[5dif]], [[Resolution|resolution]] 2.09&Aring;' scene=''>
<StructureSection load='5dif' size='340' side='right'caption='[[5dif]], [[Resolution|resolution]] 2.09&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5dif]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DIF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5DIF FirstGlance]. <br>
<table><tr><td colspan='2'>[[5dif]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5DIF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5DIF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.092&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RAN, ARA24, OK/SW-cl.81 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), YRB1, CST20, HTN1, SFO1, YDR002W, YD8119.08 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), CRM1, KAP124, XPO1, YGR218W, G8514 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Baker's yeast]), CPEB4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5dif FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5dif OCA], [http://pdbe.org/5dif PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5dif RCSB], [http://www.ebi.ac.uk/pdbsum/5dif PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5dif ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5dif FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5dif OCA], [https://pdbe.org/5dif PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5dif RCSB], [https://www.ebi.ac.uk/pdbsum/5dif PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5dif ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/RAN_HUMAN RAN_HUMAN]] GTP-binding protein involved in nucleocytoplasmic transport. Required for the import of protein into the nucleus and also for RNA export. Involved in chromatin condensation and control of cell cycle (By similarity). The complex with BIRC5/ survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref>  Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref> [[http://www.uniprot.org/uniprot/XPO1_YEAST XPO1_YEAST]] Receptor for the leucine-rich nuclear export signal (NES). [[http://www.uniprot.org/uniprot/YRB1_YEAST YRB1_YEAST]] Important for the export of protein containing nuclear export signal (NES) out of the nucleus. Stimulates the GTPase activity of GSP1 and GSP2.
[https://www.uniprot.org/uniprot/RAN_HUMAN RAN_HUMAN] GTP-binding protein involved in nucleocytoplasmic transport. Required for the import of protein into the nucleus and also for RNA export. Involved in chromatin condensation and control of cell cycle (By similarity). The complex with BIRC5/ survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref>  Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.<ref>PMID:10400640</ref> <ref>PMID:8692944</ref> <ref>PMID:18591255</ref> <ref>PMID:18617507</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). Comparison of minus and plus NESs identified structural and sequence determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.


Structural determinants of nuclear export signal orientation in binding to exportin CRM1.,Fung HY, Fu SC, Brautigam CA, Chook YM Elife. 2015 Sep 8;4. doi: 10.7554/eLife.10034. PMID:26349033<ref>PMID:26349033</ref>
==See Also==
 
*[[Exportin 3D structures|Exportin 3D structures]]
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
*[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]]
</div>
<div class="pdbe-citations 5dif" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Baker's yeast]]
[[Category: Homo sapiens]]
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Chook, Y M]]
[[Category: Saccharomyces cerevisiae S288C]]
[[Category: Fung, H Y]]
[[Category: Chook YM]]
[[Category: Exportin-1]]
[[Category: Fung HY]]
[[Category: Heat repeat]]
[[Category: Nuclear export signal]]
[[Category: Nuclear transport]]
[[Category: Peptide]]
[[Category: Transport protein]]

Latest revision as of 15:24, 6 March 2024

Crystal Structure of CPEB4 NES Peptide in complex with CRM1-Ran-RanBP1Crystal Structure of CPEB4 NES Peptide in complex with CRM1-Ran-RanBP1

Structural highlights

5dif is a 4 chain structure with sequence from Homo sapiens and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.092Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RAN_HUMAN GTP-binding protein involved in nucleocytoplasmic transport. Required for the import of protein into the nucleus and also for RNA export. Involved in chromatin condensation and control of cell cycle (By similarity). The complex with BIRC5/ survivin plays a role in mitotic spindle formation by serving as a physical scaffold to help deliver the RAN effector molecule TPX2 to microtubules. Acts as a negative regulator of the kinase activity of VRK1 and VRK2.[1] [2] [3] [4] Enhances AR-mediated transactivation. Transactivation decreases as the poly-Gln length within AR increases.[5] [6] [7] [8]

See Also

References

  1. Hsiao PW, Lin DL, Nakao R, Chang C. The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J Biol Chem. 1999 Jul 16;274(29):20229-34. PMID:10400640
  2. Moroianu J, Blobel G, Radu A. Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7059-62. PMID:8692944
  3. Xia F, Canovas PM, Guadagno TM, Altieri DC. A survivin-ran complex regulates spindle formation in tumor cells. Mol Cell Biol. 2008 Sep;28(17):5299-311. Epub 2008 Jun 30. PMID:18591255 doi:10.1128/MCB.02039-07
  4. Sanz-Garcia M, Lopez-Sanchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics. 2008 Nov;7(11):2199-214. doi: 10.1074/mcp.M700586-MCP200., Epub 2008 Jul 9. PMID:18617507 doi:10.1074/mcp.M700586-MCP200
  5. Hsiao PW, Lin DL, Nakao R, Chang C. The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J Biol Chem. 1999 Jul 16;274(29):20229-34. PMID:10400640
  6. Moroianu J, Blobel G, Radu A. Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7059-62. PMID:8692944
  7. Xia F, Canovas PM, Guadagno TM, Altieri DC. A survivin-ran complex regulates spindle formation in tumor cells. Mol Cell Biol. 2008 Sep;28(17):5299-311. Epub 2008 Jun 30. PMID:18591255 doi:10.1128/MCB.02039-07
  8. Sanz-Garcia M, Lopez-Sanchez I, Lazo PA. Proteomics identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol Cell Proteomics. 2008 Nov;7(11):2199-214. doi: 10.1074/mcp.M700586-MCP200., Epub 2008 Jul 9. PMID:18617507 doi:10.1074/mcp.M700586-MCP200

5dif, resolution 2.09Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA