5lm7: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of the lambda N-Nus factor complex== | ==Crystal structure of the lambda N-Nus factor complex== | ||
<StructureSection load='5lm7' size='340' side='right' caption='[[5lm7]], [[Resolution|resolution]] 3.35Å' scene=''> | <StructureSection load='5lm7' size='340' side='right'caption='[[5lm7]], [[Resolution|resolution]] 3.35Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[5lm7]] is a 10 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LM7 OCA]. For a <b>guided tour on the structure components</b> use [ | <table><tr><td colspan='2'>[[5lm7]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_O157:H7 Escherichia coli O157:H7], [https://en.wikipedia.org/wiki/Escherichia_coli_S88 Escherichia coli S88] and [https://en.wikipedia.org/wiki/Escherichia_virus_Lambda Escherichia virus Lambda]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LM7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5LM7 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.35Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5lm7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5lm7 OCA], [https://pdbe.org/5lm7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5lm7 RCSB], [https://www.ebi.ac.uk/pdbsum/5lm7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5lm7 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/NUSA_ECOLI NUSA_ECOLI] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.<ref>PMID:6263495</ref> <ref>PMID:6265785</ref> <ref>PMID:6199039</ref> <ref>PMID:2821282</ref> <ref>PMID:7536848</ref> <ref>PMID:9139668</ref> <ref>PMID:11719185</ref> <ref>PMID:20696893</ref> <ref>PMID:21922055</ref> | ||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
lambdaN-mediated processive antitermination constitutes a paradigmatic transcription regulatory event, during which phage protein lambdaN, host factors NusA, NusB, NusE and NusG, and an RNA nut site render elongating RNA polymerase termination-resistant. The structural basis of the process has so far remained elusive. Here we describe a crystal structure of a lambdaN-NusA-NusB-NusE-nut site complex and an electron cryo-microscopic structure of a complete transcription antitermination complex, comprising RNA polymerase, DNA, nut site RNA, all Nus factors and lambdaN, validated by crosslinking/mass spectrometry. Due to intrinsic disorder, lambdaN can act as a multiprotein/RNA interaction hub, which, together with nut site RNA, arranges NusA, NusB and NusE into a triangular complex. This complex docks via the NusA N-terminal domain and the lambdaN C-terminus next to the RNA exit channel on RNA polymerase. Based on the structures, comparative crosslinking analyses and structure-guided mutagenesis, we hypothesize that lambdaN mounts a multipronged strategy to reprogram the transcriptional machinery, which may include (1) the lambdaN C terminus clamping the RNA exit channel, thus stabilizing the DNA:RNA hybrid; (2) repositioning of NusA and RNAP elements, thus redirecting nascent RNA and sequestering the upstream branch of a terminator hairpin; and (3) hindering RNA engagement of termination factor rho and/or obstructing rho translocation on the transcript. | |||
Structural basis for lambdaN-dependent processive transcription antitermination.,Said N, Krupp F, Anedchenko E, Santos KF, Dybkov O, Huang YH, Lee CT, Loll B, Behrmann E, Burger J, Mielke T, Loerke J, Urlaub H, Spahn CMT, Weber G, Wahl MC Nat Microbiol. 2017 Apr 28;2:17062. doi: 10.1038/nmicrobiol.2017.62. PMID:28452979<ref>PMID:28452979</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 5lm7" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Ribosomal protein S10|Ribosomal protein S10]] | |||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Escherichia coli O157:H7]] | ||
[[Category: | [[Category: Escherichia coli S88]] | ||
[[Category: | [[Category: Escherichia virus Lambda]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Said N]] | ||
[[Category: | [[Category: Santos K]] | ||
[[Category: Wahl MC]] | |||
[[Category: Weber G]] |
Latest revision as of 21:34, 18 October 2023
Crystal structure of the lambda N-Nus factor complexCrystal structure of the lambda N-Nus factor complex
Structural highlights
FunctionNUSA_ECOLI Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.[1] [2] [3] [4] [5] [6] [7] [8] [9] Publication Abstract from PubMedlambdaN-mediated processive antitermination constitutes a paradigmatic transcription regulatory event, during which phage protein lambdaN, host factors NusA, NusB, NusE and NusG, and an RNA nut site render elongating RNA polymerase termination-resistant. The structural basis of the process has so far remained elusive. Here we describe a crystal structure of a lambdaN-NusA-NusB-NusE-nut site complex and an electron cryo-microscopic structure of a complete transcription antitermination complex, comprising RNA polymerase, DNA, nut site RNA, all Nus factors and lambdaN, validated by crosslinking/mass spectrometry. Due to intrinsic disorder, lambdaN can act as a multiprotein/RNA interaction hub, which, together with nut site RNA, arranges NusA, NusB and NusE into a triangular complex. This complex docks via the NusA N-terminal domain and the lambdaN C-terminus next to the RNA exit channel on RNA polymerase. Based on the structures, comparative crosslinking analyses and structure-guided mutagenesis, we hypothesize that lambdaN mounts a multipronged strategy to reprogram the transcriptional machinery, which may include (1) the lambdaN C terminus clamping the RNA exit channel, thus stabilizing the DNA:RNA hybrid; (2) repositioning of NusA and RNAP elements, thus redirecting nascent RNA and sequestering the upstream branch of a terminator hairpin; and (3) hindering RNA engagement of termination factor rho and/or obstructing rho translocation on the transcript. Structural basis for lambdaN-dependent processive transcription antitermination.,Said N, Krupp F, Anedchenko E, Santos KF, Dybkov O, Huang YH, Lee CT, Loll B, Behrmann E, Burger J, Mielke T, Loerke J, Urlaub H, Spahn CMT, Weber G, Wahl MC Nat Microbiol. 2017 Apr 28;2:17062. doi: 10.1038/nmicrobiol.2017.62. PMID:28452979[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|