3mhh: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module== | ==Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module== | ||
<StructureSection load='3mhh' size='340' side='right' caption='[[3mhh]], [[Resolution|resolution]] 2.45Å' scene=''> | <StructureSection load='3mhh' size='340' side='right'caption='[[3mhh]], [[Resolution|resolution]] 2.45Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3mhh]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3mhh]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MHH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MHH FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.45Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id=' | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3mhh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mhh OCA], [https://pdbe.org/3mhh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3mhh RCSB], [https://www.ebi.ac.uk/pdbsum/3mhh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3mhh ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/UBP8_YEAST UBP8_YEAST] Functions as histone deubiquitinating component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK. SAGA is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SAGA acetylates nucleosomal histone H3 to some extent (to form H3K9ac, H3K14ac, H3K18ac and H3K23ac). SAGA interacts with DNA via upstream activating sequences (UASs). SLIK is proposed to have partly overlapping functions with SAGA. It preferentially acetylates methylated histone H3, at least after activation at the GAL1-10 locus. Together with SGF11, is required for histone H2B deubiquitination.<ref>PMID:10026213</ref> <ref>PMID:14660634</ref> <ref>PMID:15657441</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mh/3mhh_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mh/3mhh_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
Line 21: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3mhh ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3mhh ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
==See Also== | ==See Also== | ||
*[[SAGA-associated factor|SAGA-associated factor]] | *[[SAGA-associated factor|SAGA-associated factor]] | ||
*[[Thioesterase|Thioesterase]] | *[[Thioesterase 3D structures|Thioesterase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: Berndsen | [[Category: Berndsen CE]] | ||
[[Category: Cohen | [[Category: Cohen RE]] | ||
[[Category: Datta | [[Category: Datta AB]] | ||
[[Category: Samara | [[Category: Samara NL]] | ||
[[Category: Wolberger | [[Category: Wolberger C]] | ||
[[Category: Yao | [[Category: Yao T]] | ||
[[Category: Zhang | [[Category: Zhang X]] | ||
Latest revision as of 13:25, 21 February 2024
Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB moduleStructure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module
Structural highlights
FunctionUBP8_YEAST Functions as histone deubiquitinating component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK. SAGA is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SAGA acetylates nucleosomal histone H3 to some extent (to form H3K9ac, H3K14ac, H3K18ac and H3K23ac). SAGA interacts with DNA via upstream activating sequences (UASs). SLIK is proposed to have partly overlapping functions with SAGA. It preferentially acetylates methylated histone H3, at least after activation at the GAL1-10 locus. Together with SGF11, is required for histone H2B deubiquitination.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|