5k97: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 5k97 is ON HOLD Authors: Description: Category: Unreleased Structures
 
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 5k97 is ON HOLD
==Flap endonuclease 1 (FEN1) D233N with cleaved product fragment and Sm3+==
<StructureSection load='5k97' size='340' side='right'caption='[[5k97]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[5k97]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K97 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K97 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.102&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=SM:SAMARIUM+(III)+ION'>SM</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k97 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k97 OCA], [https://pdbe.org/5k97 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k97 RCSB], [https://www.ebi.ac.uk/pdbsum/5k97 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k97 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/FEN1_HUMAN FEN1_HUMAN] Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.<ref>PMID:7961795</ref> <ref>PMID:8621570</ref> <ref>PMID:10744741</ref> <ref>PMID:11986308</ref> <ref>PMID:18443037</ref> <ref>PMID:20729856</ref>


Authors:  
==See Also==
 
*[[Endonuclease 3D structures|Endonuclease 3D structures]]
Description:  
== References ==
[[Category: Unreleased Structures]]
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Synthetic construct]]
[[Category: Arvai AS]]
[[Category: Tainer JA]]
[[Category: Tsutakawa SE]]

Latest revision as of 16:04, 1 March 2024

Flap endonuclease 1 (FEN1) D233N with cleaved product fragment and Sm3+Flap endonuclease 1 (FEN1) D233N with cleaved product fragment and Sm3+

Structural highlights

5k97 is a 5 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.102Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FEN1_HUMAN Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.[1] [2] [3] [4] [5] [6]

See Also

References

  1. Robins P, Pappin DJ, Wood RD, Lindahl T. Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I. J Biol Chem. 1994 Nov 18;269(46):28535-8. PMID:7961795
  2. Shen B, Nolan JP, Sklar LA, Park MS. Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J Biol Chem. 1996 Apr 19;271(16):9173-6. PMID:8621570
  3. Tom S, Henricksen LA, Bambara RA. Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. 2000 Apr 7;275(14):10498-505. PMID:10744741
  4. Qiu J, Bimston DN, Partikian A, Shen B. Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination. J Biol Chem. 2002 Jul 5;277(27):24659-66. Epub 2002 May 1. PMID:11986308 doi:http://dx.doi.org/10.1074/jbc.M111941200
  5. Guo Z, Qian L, Liu R, Dai H, Zhou M, Zheng L, Shen B. Nucleolar localization and dynamic roles of flap endonuclease 1 in ribosomal DNA replication and damage repair. Mol Cell Biol. 2008 Jul;28(13):4310-9. doi: 10.1128/MCB.00200-08. Epub 2008 Apr, 28. PMID:18443037 doi:http://dx.doi.org/10.1128/MCB.00200-08
  6. Guo Z, Zheng L, Xu H, Dai H, Zhou M, Pascua MR, Chen QM, Shen B. Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol. 2010 Oct;6(10):766-73. doi: 10.1038/nchembio.422. Epub 2010 Aug, 22. PMID:20729856 doi:http://dx.doi.org/10.1038/nchembio.422

5k97, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA