5ftl: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:


==Cryo-EM structure of human p97 bound to ATPgS (Conformation I)==
==Cryo-EM structure of human p97 bound to ATPgS (Conformation I)==
<StructureSection load='5ftl' size='340' side='right' caption='[[5ftl]], [[Resolution|resolution]] 3.30&Aring;' scene=''>
<SX load='5ftl' size='340' side='right' viewer='molstar' caption='[[5ftl]], [[Resolution|resolution]] 3.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5ftl]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FTL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5FTL FirstGlance]. <br>
<table><tr><td colspan='2'>[[5ftl]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FTL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5FTL FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.3&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ftj|5ftj]], [[5ftk|5ftk]], [[5ftm|5ftm]], [[5ftn|5ftn]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Vesicle-fusing_ATPase Vesicle-fusing ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.6 3.6.4.6] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ftl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ftl OCA], [https://pdbe.org/5ftl PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ftl RCSB], [https://www.ebi.ac.uk/pdbsum/5ftl PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ftl ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ftl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ftl OCA], [http://pdbe.org/5ftl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ftl RCSB], [http://www.ebi.ac.uk/pdbsum/5ftl PDBsum]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/TERA_HUMAN TERA_HUMAN]] Defects in VCP are the cause of inclusion body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD) [MIM:[http://omim.org/entry/167320 167320]]; also known as muscular dystrophy, limb-girdle, with Paget disease of bone or pagetoid amyotrophic lateral sclerosis or pagetoid neuroskeletal syndrome or lower motor neuron degeneration with Paget-like bone disease. IBMPFD features adult-onset proximal and distal muscle weakness (clinically resembling limb girdle muscular dystrophy), early-onset Paget disease of bone in most cases and premature frontotemporal dementia.<ref>PMID:20512113</ref> <ref>PMID:15034582</ref> <ref>PMID:15732117</ref> <ref>PMID:16247064</ref> <ref>PMID:16321991</ref>  Defects in VCP are the cause of amyotrophic lateral sclerosis type 14 with or without frontotemporal dementia (ALS14) [MIM:[http://omim.org/entry/613954 613954]]. ALS14 is a neurodegenerative disorder affecting upper motor neurons in the brain and lower motor neurons in the brain stem and spinal cord, resulting in fatal paralysis. Sensory abnormalities are absent. The pathologic hallmarks of the disease include pallor of the corticospinal tract due to loss of motor neurons, presence of ubiquitin-positive inclusions within surviving motor neurons, and deposition of pathologic aggregates. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of the cases. Patients with ALS14 may develop frontotemporal dementia.<ref>PMID:21145000</ref>
[https://www.uniprot.org/uniprot/TERA_HUMAN TERA_HUMAN] Defects in VCP are the cause of inclusion body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD) [MIM:[https://omim.org/entry/167320 167320]; also known as muscular dystrophy, limb-girdle, with Paget disease of bone or pagetoid amyotrophic lateral sclerosis or pagetoid neuroskeletal syndrome or lower motor neuron degeneration with Paget-like bone disease. IBMPFD features adult-onset proximal and distal muscle weakness (clinically resembling limb girdle muscular dystrophy), early-onset Paget disease of bone in most cases and premature frontotemporal dementia.<ref>PMID:20512113</ref> <ref>PMID:15034582</ref> <ref>PMID:15732117</ref> <ref>PMID:16247064</ref> <ref>PMID:16321991</ref>  Defects in VCP are the cause of amyotrophic lateral sclerosis type 14 with or without frontotemporal dementia (ALS14) [MIM:[https://omim.org/entry/613954 613954]. ALS14 is a neurodegenerative disorder affecting upper motor neurons in the brain and lower motor neurons in the brain stem and spinal cord, resulting in fatal paralysis. Sensory abnormalities are absent. The pathologic hallmarks of the disease include pallor of the corticospinal tract due to loss of motor neurons, presence of ubiquitin-positive inclusions within surviving motor neurons, and deposition of pathologic aggregates. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of the cases. Patients with ALS14 may develop frontotemporal dementia.<ref>PMID:21145000</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TERA_HUMAN TERA_HUMAN]] Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1L, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1L-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A (By similarity). Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites. Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage.<ref>PMID:15456787</ref> <ref>PMID:16168377</ref> <ref>PMID:22020440</ref> <ref>PMID:22120668</ref> <ref>PMID:22607976</ref> <ref>PMID:23042607</ref> <ref>PMID:23042605</ref>
[https://www.uniprot.org/uniprot/TERA_HUMAN TERA_HUMAN] Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1L, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1L-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A (By similarity). Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites. Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage.<ref>PMID:15456787</ref> <ref>PMID:16168377</ref> <ref>PMID:22020440</ref> <ref>PMID:22120668</ref> <ref>PMID:22607976</ref> <ref>PMID:23042607</ref> <ref>PMID:23042605</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 22: Line 21:
</div>
</div>
<div class="pdbe-citations 5ftl" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5ftl" style="background-color:#fffaf0;"></div>
==See Also==
*[[ATPase 3D structures|ATPase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</SX>
[[Category: Vesicle-fusing ATPase]]
[[Category: Homo sapiens]]
[[Category: Arkin, M]]
[[Category: Large Structures]]
[[Category: Banerjee, S]]
[[Category: Arkin M]]
[[Category: Bartesaghi, A]]
[[Category: Banerjee S]]
[[Category: Bulfer, S L]]
[[Category: Bartesaghi A]]
[[Category: Deshaies, R J]]
[[Category: Bulfer SL]]
[[Category: Falconieri, V]]
[[Category: Deshaies RJ]]
[[Category: Green, N]]
[[Category: Falconieri V]]
[[Category: Huryn, D]]
[[Category: Green N]]
[[Category: Merk, A]]
[[Category: Huryn D]]
[[Category: Milne, J L.S]]
[[Category: Merk A]]
[[Category: Mroczkowski, B]]
[[Category: Milne JLS]]
[[Category: Neitz, R J]]
[[Category: Mroczkowski B]]
[[Category: Rao, P]]
[[Category: Neitz RJ]]
[[Category: Subramaniam, S]]
[[Category: Rao P]]
[[Category: Wipf, P]]
[[Category: Subramaniam S]]
[[Category: Yan, Y]]
[[Category: Wipf P]]
[[Category: Aaa atpase]]
[[Category: Yan Y]]
[[Category: Hydrolase]]
[[Category: P97]]
[[Category: Single-particle]]

Latest revision as of 16:25, 26 July 2023

Cryo-EM structure of human p97 bound to ATPgS (Conformation I)Cryo-EM structure of human p97 bound to ATPgS (Conformation I)

5ftl, resolution 3.30Å

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA