5ib5: Difference between revisions
m Protected "5ib5" [edit=sysop:move=sysop] |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal structure of HLA-B*27:09 complexed with the self-peptide pVIPR and Copper== | ||
<StructureSection load='5ib5' size='340' side='right'caption='[[5ib5]], [[Resolution|resolution]] 2.49Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[5ib5]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IB5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IB5 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.49Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ib5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ib5 OCA], [https://pdbe.org/5ib5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ib5 RCSB], [https://www.ebi.ac.uk/pdbsum/5ib5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ib5 ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[https://omim.org/entry/241600 241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Conformational changes of major histocompatibility complex (MHC) antigens have the potential to be recognized by T cells and may arise from polymorphic variation of the MHC molecule, the binding of modifying ligands, or both. Here, we investigated whether metal ions could affect allele-dependent structural variation of the two minimally distinct human leukocyte antigen (HLA)-B*27:05 and HLA-B*27:09 subtypes, which exhibit differential association with the rheumatic disease ankylosing spondylitis (AS). We employed NMR spectroscopy and X-ray crystallography coupled with ensemble refinement to study the AS-associated HLA-B*27:05 subtype and the AS non-associated HLA-B* 27:09 in complex with the self-peptide pVIPR (RRKWRRWHL). Both techniques revealed that pVIPR exhibits a higher degree of flexibility when complexed with HLA-B* 27:05 than with HLA-B*27:09. Furthermore, we found that the binding of the metal ions Cu2+ or Ni2+, but not Mn2+, Zn2+, or Hg2+ affects the structure of a pVIPR-bound HLA-B*27 molecule in a subtype-dependent manner. In HLA-B*27:05, the metals triggered conformational reorientations of pVIPR, but no such structural changes were observed in the HLA-B*27:09 subtype, with or without bound metal ion. These observations provide the first demonstration that not only MHC class II, but also class I molecules can undergo metal ion-induced conformational alterations. Our findings suggest that metals may have role in triggering rheumatic diseases such as AS and also have implications for the molecular basis of metal-induced hypersensitivities and allergies. | |||
Metal-triggered conformational reorientation of a self-peptide bound to a disease-associated HLA-B*27 subtype.,Driller R, Ballaschk M, Schmieder P, Uchanska-Ziegler B, Ziegler A, Loll B J Biol Chem. 2019 Jul 11. pii: RA119.008937. doi: 10.1074/jbc.RA119.008937. PMID:31296658<ref>PMID:31296658</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: Ballaschk | <div class="pdbe-citations 5ib5" style="background-color:#fffaf0;"></div> | ||
[[Category: | |||
[[Category: | ==See Also== | ||
[[Category: | *[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | ||
[[Category: | == References == | ||
[[Category: Ziegler | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Ballaschk M]] | |||
[[Category: Janke R]] | |||
[[Category: Loll B]] | |||
[[Category: Schmieder P]] | |||
[[Category: Uchanska-Ziegler B]] | |||
[[Category: Ziegler A]] |