5cd4: Difference between revisions

No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
==The Type IE CRISPR Cascade complex from E. coli, with two assemblies in the asymmetric unit arranged back-to-back==
==The Type IE CRISPR Cascade complex from E. coli, with two assemblies in the asymmetric unit arranged back-to-back==
<StructureSection load='5cd4' size='340' side='right' caption='[[5cd4]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
<StructureSection load='5cd4' size='340' side='right'caption='[[5cd4]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5cd4]] is a 24 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CD4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5CD4 FirstGlance]. <br>
<table><tr><td colspan='2'>[[5cd4]] is a 24 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CD4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5CD4 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2&#8491;</td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=23G:GUANOSINE-5-PHOSPHATE-2,3-CYCLIC+PHOSPHATE'>23G</scene></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=23G:GUANOSINE-5-PHOSPHATE-2,3-CYCLIC+PHOSPHATE'>23G</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5cd4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cd4 OCA], [http://pdbe.org/5cd4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5cd4 RCSB], [http://www.ebi.ac.uk/pdbsum/5cd4 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5cd4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cd4 OCA], [https://pdbe.org/5cd4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5cd4 RCSB], [https://www.ebi.ac.uk/pdbsum/5cd4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5cd4 ProSAT]</span></td></tr>
</table>
</table>
{{Large structure}}
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CSE1_ECOLI CSE1_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:22621933</ref> <ref>PMID:22521690</ref>  A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, probably via interactions with CasA, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasA is not required for formation of Cascade, but probably enhances binding to and subsequent recognition of both target dsDNA and ssDNA.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:22621933</ref> <ref>PMID:22521690</ref>  [[http://www.uniprot.org/uniprot/CAS6_ECOLI CAS6_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:18703739</ref> <ref>PMID:21219465</ref> <ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  CasE is required to process the pre-crRNA into single repeat-spacer units, with an 8-nt 5'-repeat DNA tag that may help other proteins recognize the crRNA. This subunit alone will cleave pre-crRNA, as will CasCDE or CasCE; cleavage does not require divalent metals or ATP. CasCDE alone is also able to form R-loops. Partially inhibits the cleavage of Holliday junctions by YgbT (Cas1). Yields a 5'-hydroxy group and a 2',3'-cyclic phosphate terminus.<ref>PMID:18703739</ref> <ref>PMID:21219465</ref> <ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization.<ref>PMID:18703739</ref> <ref>PMID:21219465</ref> <ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  [[http://www.uniprot.org/uniprot/CAS5_ECOLI CAS5_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasCDE alone is also able to form R-loops.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> [[http://www.uniprot.org/uniprot/CASC_ECOLI CASC_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasCDE alone is also able to form R-loops.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  [[http://www.uniprot.org/uniprot/CSE2_ECOLI CSE2_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref>  A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> 
[https://www.uniprot.org/uniprot/CAS5_ECOLI CAS5_ECOLI] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasCDE alone is also able to form R-loops.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref>  
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 19: Line 19:
</div>
</div>
<div class="pdbe-citations 5cd4" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5cd4" style="background-color:#fffaf0;"></div>
==See Also==
*[[CRISPR type I-E (Cascade)|CRISPR type I-E (Cascade)]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Carter, J]]
[[Category: Escherichia coli K-12]]
[[Category: Golden, S M]]
[[Category: Large Structures]]
[[Category: Jackson, R N]]
[[Category: Carter J]]
[[Category: Wiedenheft, B]]
[[Category: Golden SM]]
[[Category: Adaptive immunity]]
[[Category: Jackson RN]]
[[Category: Cascade]]
[[Category: Wiedenheft B]]
[[Category: Crispr]]
[[Category: Hydrolase-rna complex]]
[[Category: Rna surveillance]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA