2k3s: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==HADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulin== | ==HADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulin== | ||
<StructureSection load='2k3s' size='340' side='right' caption='[[2k3s | <StructureSection load='2k3s' size='340' side='right'caption='[[2k3s]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2k3s]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[2k3s]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K3S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2K3S FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2k3s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k3s OCA], [https://pdbe.org/2k3s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2k3s RCSB], [https://www.ebi.ac.uk/pdbsum/2k3s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2k3s ProSAT]</span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/SMTL1_MOUSE SMTL1_MOUSE] Plays a role in the regulation of contractile properties of both striated and smooth muscles. When unphosphorylated, may inhibit myosin dephosphorylation. Phosphorylation at Ser-301 reduces this inhibitory activity.<ref>PMID:18310078</ref> <ref>PMID:20634291</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k3/2k3s_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k3/2k3s_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2k3s ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 30: | Line 30: | ||
==See Also== | ==See Also== | ||
*[[Calmodulin|Calmodulin]] | *[[Calmodulin 3D structures|Calmodulin 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Xenopus laevis]] | [[Category: Xenopus laevis]] | ||
[[Category: Borman | [[Category: Borman MA]] | ||
[[Category: Ishida | [[Category: Ishida H]] | ||
[[Category: MacDonald | [[Category: MacDonald JA]] | ||
[[Category: Ostrander | [[Category: Ostrander J]] | ||
[[Category: Vogel | [[Category: Vogel HJ]] | ||
Latest revision as of 22:09, 29 May 2024
HADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulinHADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulin
Structural highlights
FunctionSMTL1_MOUSE Plays a role in the regulation of contractile properties of both striated and smooth muscles. When unphosphorylated, may inhibit myosin dephosphorylation. Phosphorylation at Ser-301 reduces this inhibitory activity.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe SMTNL1 protein contains a single type-2 calponin homology (CH) domain at its C terminus that shares sequence identity with the smoothelin family of smooth muscle-specific proteins. In contrast to the smoothelins, SMTNL1 does not associate with F-actin in vitro, and its specific role in smooth muscle remains unclear. In addition, the biological function of the C-terminal CH-domains found in the smoothelin proteins is also poorly understood. In this work, we have therefore determined the solution structure of the CH-domain of mouse SMTNL1 (SMTNL1-CH; residues 346-459). The secondary structure and the overall fold for the C-terminal type-2 CH-domain is very similar to that of other CH-domains. However, two clusters of basic residues form a unique surface structure that is characteristic of SMTNL1-CH. Moreover, the protein has an extended C-terminal alpha-helix, which contains a calmodulin (CaM)-binding IQ-motif, that is also a distinct feature of the smoothelins. We have characterized the binding of apo-CaM to SMTNL1-CH through its IQ-motif by isothermal titration calorimetry and NMR chemical shift perturbation studies. In addition, we have used the HADDOCK protein-protein docking approach to construct a model for the complex of apo-CaM and SMTNL1-CH. The model revealed a close interaction of SMTNL1-CH with the two Ca(2+) binding loop regions of the C-terminal domain of apo-CaM; this mode of apo-CaM binding is distinct from previously reported interactions of apo-CaM with IQ-motifs. Finally, we comment on the putative role of the CH-domain in the biological function of SMTNL1. Solution structure of the calponin homology (CH) domain from the smoothelin-like 1 protein: a unique apocalmodulin-binding mode and the possible role of the C-terminal type-2 CH-domain in smooth muscle relaxation.,Ishida H, Borman MA, Ostrander J, Vogel HJ, MacDonald JA J Biol Chem. 2008 Jul 18;283(29):20569-78. Epub 2008 May 12. PMID:18477568[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|