2vt0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==X-ray structure of a conjugate with conduritol-beta-epoxide of acid-beta-glucosidase overexpressed in cultured plant cells==
==X-ray structure of a conjugate with conduritol-beta-epoxide of acid-beta-glucosidase overexpressed in cultured plant cells==
<StructureSection load='2vt0' size='340' side='right' caption='[[2vt0]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
<StructureSection load='2vt0' size='340' side='right'caption='[[2vt0]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2vt0]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VT0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VT0 FirstGlance]. <br>
<table><tr><td colspan='2'>[[2vt0]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VT0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2VT0 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CBU:(1R,2R,3S,4S,5S,6S)-CYCLOHEXANE-1,2,3,4,5,6-HEXOL'>CBU</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15&#8491;</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucosylceramidase Glucosylceramidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.45 3.2.1.45] </span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CBU:(1R,2R,3S,4S,5S,6S)-CYCLOHEXANE-1,2,3,4,5,6-HEXOL'>CBU</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vt0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vt0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2vt0 RCSB], [http://www.ebi.ac.uk/pdbsum/2vt0 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2vt0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vt0 OCA], [https://pdbe.org/2vt0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2vt0 RCSB], [https://www.ebi.ac.uk/pdbsum/2vt0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2vt0 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/GBA1_HUMAN GBA1_HUMAN] Gaucher disease type 3;Gaucher disease-ophthalmoplegia-cardiovascular calcification syndrome;Gaucher disease type 1;Hereditary late-onset Parkinson disease;Gaucher disease type 2;Fetal Gaucher disease;NON RARE IN EUROPE: Dementia with Lewy body;NON RARE IN EUROPE: Parkinson disease. The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry.  The disease is caused by variants affecting the gene represented in this entry. Perinatal lethal Gaucher disease is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.<ref>PMID:10352942</ref>  Disease susceptibility may be associated with variants affecting the gene represented in this entry.
== Function ==
[https://www.uniprot.org/uniprot/GBA1_HUMAN GBA1_HUMAN] Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) into free ceramides (such as N-acylsphing-4-enine) and glucose (PubMed:15916907, PubMed:24211208, PubMed:32144204, PubMed:9201993). Plays a central role in the degradation of complex lipids and the turnover of cellular membranes (PubMed:27378698). Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation (PubMed:19279011). Catalyzes the glucosylation of cholesterol, through a transglucosylation reaction where glucose is transferred from GlcCer to cholesterol (PubMed:24211208, PubMed:26724485, PubMed:32144204). GlcCer containing mono-unsaturated fatty acids (such as beta-D-glucosyl-N-(9Z-octadecenoyl)-sphing-4-enine) are preferred as glucose donors for cholesterol glucosylation when compared with GlcCer containing same chain length of saturated fatty acids (such as beta-D-glucosyl-N-octadecanoyl-sphing-4-enine) (PubMed:24211208). Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl 3-beta-D-glucoside to ceramide (Probable) (PubMed:26724485). Can also hydrolyze cholesteryl 3-beta-D-glucoside producing glucose and cholesterol (PubMed:24211208, PubMed:26724485). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the transfer of galactose between GalCers and cholesterol in vitro, but with lower activity than with GlcCers (PubMed:32144204). Contrary to GlcCer and GalCer, xylosylceramide/XylCer (such as beta-D-xyosyl-(1<->1')-N-acylsphing-4-enine) is not a good substrate for hydrolysis, however it is a good xylose donor for transxylosylation activity to form cholesteryl 3-beta-D-xyloside (PubMed:33361282).<ref>PMID:15916907</ref> <ref>PMID:19279011</ref> <ref>PMID:24211208</ref> <ref>PMID:26724485</ref> <ref>PMID:27378698</ref> <ref>PMID:32144204</ref> <ref>PMID:33361282</ref> <ref>PMID:9201993</ref> <ref>PMID:32144204</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vt/2vt0_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vt/2vt0_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2vt0 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
Line 25: Line 30:
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 2vt0" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Acid-beta-glucosidase|Acid-beta-glucosidase]]
*[[Acid-beta-glucosidase 3D structures|Acid-beta-glucosidase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Glucosylceramidase]]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Aviezer, D]]
[[Category: Large Structures]]
[[Category: Brumshtein, B]]
[[Category: Aviezer D]]
[[Category: Futerman, A H]]
[[Category: Brumshtein B]]
[[Category: Greenblatt, H M]]
[[Category: Futerman AH]]
[[Category: Shaaltiel, Y]]
[[Category: Greenblatt HM]]
[[Category: Silman, I]]
[[Category: Shaaltiel Y]]
[[Category: Sussman, J L]]
[[Category: Silman I]]
[[Category: Alternative initiation]]
[[Category: Sussman JL]]
[[Category: Cerezyme]]
[[Category: Disease mutation]]
[[Category: Gaucher disease]]
[[Category: Glucocerebrosidase]]
[[Category: Glucosidase]]
[[Category: Glycoprotein]]
[[Category: Glycosidase]]
[[Category: Hydrolase]]
[[Category: ISPC, Israel Structural Proteomics Center]]
[[Category: Lipid metabolism]]
[[Category: Lysosome]]
[[Category: Membrane]]
[[Category: Sphingolipid metabolism]]
[[Category: Structural genomic]]

Latest revision as of 11:01, 23 October 2024

X-ray structure of a conjugate with conduritol-beta-epoxide of acid-beta-glucosidase overexpressed in cultured plant cellsX-ray structure of a conjugate with conduritol-beta-epoxide of acid-beta-glucosidase overexpressed in cultured plant cells

Structural highlights

2vt0 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.15Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

GBA1_HUMAN Gaucher disease type 3;Gaucher disease-ophthalmoplegia-cardiovascular calcification syndrome;Gaucher disease type 1;Hereditary late-onset Parkinson disease;Gaucher disease type 2;Fetal Gaucher disease;NON RARE IN EUROPE: Dementia with Lewy body;NON RARE IN EUROPE: Parkinson disease. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. The disease is caused by variants affecting the gene represented in this entry. Perinatal lethal Gaucher disease is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.[1] Disease susceptibility may be associated with variants affecting the gene represented in this entry.

Function

GBA1_HUMAN Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramides/GlcCers (such as beta-D-glucosyl-(1<->1')-N-acylsphing-4-enine) into free ceramides (such as N-acylsphing-4-enine) and glucose (PubMed:15916907, PubMed:24211208, PubMed:32144204, PubMed:9201993). Plays a central role in the degradation of complex lipids and the turnover of cellular membranes (PubMed:27378698). Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation (PubMed:19279011). Catalyzes the glucosylation of cholesterol, through a transglucosylation reaction where glucose is transferred from GlcCer to cholesterol (PubMed:24211208, PubMed:26724485, PubMed:32144204). GlcCer containing mono-unsaturated fatty acids (such as beta-D-glucosyl-N-(9Z-octadecenoyl)-sphing-4-enine) are preferred as glucose donors for cholesterol glucosylation when compared with GlcCer containing same chain length of saturated fatty acids (such as beta-D-glucosyl-N-octadecanoyl-sphing-4-enine) (PubMed:24211208). Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl 3-beta-D-glucoside to ceramide (Probable) (PubMed:26724485). Can also hydrolyze cholesteryl 3-beta-D-glucoside producing glucose and cholesterol (PubMed:24211208, PubMed:26724485). Catalyzes the hydrolysis of galactosylceramides/GalCers (such as beta-D-galactosyl-(1<->1')-N-acylsphing-4-enine), as well as the transfer of galactose between GalCers and cholesterol in vitro, but with lower activity than with GlcCers (PubMed:32144204). Contrary to GlcCer and GalCer, xylosylceramide/XylCer (such as beta-D-xyosyl-(1<->1')-N-acylsphing-4-enine) is not a good substrate for hydrolysis, however it is a good xylose donor for transxylosylation activity to form cholesteryl 3-beta-D-xyloside (PubMed:33361282).[2] [3] [4] [5] [6] [7] [8] [9] [10]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In mammalian cells, glucosylceramide (GlcCer), the simplest glycosphingolipid, is hydrolyzed by the lysosomal enzyme acid beta-glucosidase (GlcCerase). In the human metabolic disorder Gaucher disease, GlcCerase activity is significantly decreased owing to one of approximately 200 mutations in the GlcCerase gene. The most common therapy for Gaucher disease is enzyme replacement therapy (ERT), in which patients are given intravenous injections of recombinant human GlcCerase; the Genzyme product Cerezyme has been used clinically for more than 15 years and is administered to approximately 4000 patients worldwide. Here we review the crystal structure of Cerezyme and other recombinant forms of GlcCerase, as well as of their complexes with covalent and non-covalent inhibitors. We also discuss the stability of Cerezyme, which can be altered by modification of its N-glycan chains with possible implications for improved ERT in Gaucher disease.

Acid beta-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy.,Kacher Y, Brumshtein B, Boldin-Adamsky S, Toker L, Shainskaya A, Silman I, Sussman JL, Futerman AH Biol Chem. 2008 Nov;389(11):1361-9. PMID:18783340[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Stone DL, van Diggelen OP, de Klerk JB, Gaillard JL, Niermeijer MF, Willemsen R, Tayebi N, Sidransky E. Is the perinatal lethal form of Gaucher disease more common than classic type 2 Gaucher disease? Eur J Hum Genet. 1999 May-Jun;7(4):505-9. PMID:10352942 doi:10.1038/sj.ejhg.5200315
  2. Ron I, Dagan A, Gatt S, Pasmanik-Chor M, Horowitz M. Use of fluorescent substrates for characterization of Gaucher disease mutations. Blood Cells Mol Dis. 2005 Jul-Aug;35(1):57-65. PMID:15916907 doi:10.1016/j.bcmd.2005.03.006
  3. Kitatani K, Sheldon K, Rajagopalan V, Anelli V, Jenkins RW, Sun Y, Grabowski GA, Obeid LM, Hannun YA. Involvement of acid beta-glucosidase 1 in the salvage pathway of ceramide formation. J Biol Chem. 2009 May 8;284(19):12972-8. PMID:19279011 doi:10.1074/jbc.M802790200
  4. Akiyama H, Kobayashi S, Hirabayashi Y, Murakami-Murofushi K. Cholesterol glucosylation is catalyzed by transglucosylation reaction of β-glucosidase 1. Biochem Biophys Res Commun. 2013 Nov 29;441(4):838-43. PMID:24211208 doi:10.1016/j.bbrc.2013.10.145
  5. Marques AR, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, Ghauharali-van der Vlugt K, Meijer R, Giraldo P, Alfonso P, Irún P, Dahl M, Karlsson S, Pavlova EV, Cox TM, Scheij S, Verhoek M, Ottenhoff R, van Roomen CP, Pannu NS, van Eijk M, Dekker N, Boot RG, Overkleeft HS, Blommaart E, Hirabayashi Y, Aerts JM. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases. J Lipid Res. 2016 Mar;57(3):451-63. PMID:26724485 doi:10.1194/jlr.M064923
  6. Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD, Schapira AH. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet. 2016 Aug 15;25(16):3432-3445. PMID:27378698 doi:10.1093/hmg/ddw185
  7. Akiyama H, Ide M, Nagatsuka Y, Sayano T, Nakanishi E, Uemura N, Yuyama K, Yamaguchi Y, Kamiguchi H, Takahashi R, Aerts JMFG, Greimel P, Hirabayashi Y. Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol. J Biol Chem. 2020 Apr 17;295(16):5257-5277. PMID:32144204 doi:10.1074/jbc.RA119.012502
  8. Boer DE, Mirzaian M, Ferraz MJ, Zwiers KC, Baks MV, Hazeu MD, Ottenhoff R, Marques ARA, Meijer R, Roos JCP, Cox TM, Boot RG, Pannu N, Overkleeft HS, Artola M, Aerts JM. Human glucocerebrosidase mediates formation of xylosyl-cholesterol by β-xylosidase and transxylosidase reactions. J Lipid Res. 2021;62:100018. PMID:33361282 doi:10.1194/jlr.RA120001043
  9. Vaccaro AM, Tatti M, Ciaffoni F, Salvioli R, Barca A, Scerch C. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J Biol Chem. 1997 Jul 4;272(27):16862-7. PMID:9201993 doi:10.1074/jbc.272.27.16862
  10. Akiyama H, Ide M, Nagatsuka Y, Sayano T, Nakanishi E, Uemura N, Yuyama K, Yamaguchi Y, Kamiguchi H, Takahashi R, Aerts JMFG, Greimel P, Hirabayashi Y. Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol. J Biol Chem. 2020 Apr 17;295(16):5257-5277. PMID:32144204 doi:10.1074/jbc.RA119.012502
  11. Kacher Y, Brumshtein B, Boldin-Adamsky S, Toker L, Shainskaya A, Silman I, Sussman JL, Futerman AH. Acid beta-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Biol Chem. 2008 Nov;389(11):1361-9. PMID:18783340 doi:http://dx.doi.org/10.1515/BC.2008.163

2vt0, resolution 2.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA