4iwc: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with a Dynamic Thiophene-derivative== | ==Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with a Dynamic Thiophene-derivative== | ||
<StructureSection load='4iwc' size='340' side='right' caption='[[4iwc]], [[Resolution|resolution]] 2.24Å' scene=''> | <StructureSection load='4iwc' size='340' side='right'caption='[[4iwc]], [[Resolution|resolution]] 2.24Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4iwc]] is a 4 chain structure with sequence from [ | <table><tr><td colspan='2'>[[4iwc]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4IWC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4IWC FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.24Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1GV:4,4-THIENE-2,5-DIYLBIS(3-METHYLPHENOL)'>1GV</scene></td></tr> | |||
<tr id=' | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4iwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4iwc OCA], [https://pdbe.org/4iwc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4iwc RCSB], [https://www.ebi.ac.uk/pdbsum/4iwc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4iwc ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/ESR1_HUMAN ESR1_HUMAN] Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Isoform 3 can bind to ERE and inhibit isoform 1.<ref>PMID:7651415</ref> <ref>PMID:10970861</ref> <ref>PMID:9328340</ref> <ref>PMID:10681512</ref> <ref>PMID:10816575</ref> <ref>PMID:11477071</ref> <ref>PMID:11682626</ref> <ref>PMID:15078875</ref> <ref>PMID:16043358</ref> <ref>PMID:15891768</ref> <ref>PMID:16684779</ref> <ref>PMID:18247370</ref> <ref>PMID:17932106</ref> <ref>PMID:19350539</ref> <ref>PMID:20705611</ref> <ref>PMID:21937726</ref> <ref>PMID:21330404</ref> <ref>PMID:22083956</ref> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 20: | Line 18: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 4iwc" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Estrogen receptor|Estrogen receptor]] | *[[Estrogen receptor 3D structures|Estrogen receptor 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 28: | Line 27: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Cavett | [[Category: Large Structures]] | ||
[[Category: Hughes | [[Category: Cavett V]] | ||
[[Category: Katzenellenbogen | [[Category: Hughes TS]] | ||
[[Category: Kojetin | [[Category: Katzenellenbogen JA]] | ||
[[Category: Nettles | [[Category: Kojetin DJ]] | ||
[[Category: Nowak | [[Category: Nettles KW]] | ||
[[Category: Nwachukwu | [[Category: Nowak J]] | ||
[[Category: Parent | [[Category: Nwachukwu JC]] | ||
[[Category: Srinivasan | [[Category: Parent AA]] | ||
[[Category: Srinivasan S]] | |||
Latest revision as of 18:32, 20 September 2023
Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with a Dynamic Thiophene-derivativeCrystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with a Dynamic Thiophene-derivative
Structural highlights
FunctionESR1_HUMAN Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Isoform 3 can bind to ERE and inhibit isoform 1.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] Publication Abstract from PubMedLigand-binding dynamics control allosteric signaling through the estrogen receptor-alpha (ERalpha), but the biological consequences of such dynamic binding orientations are unknown. Here, we compare a set of ER ligands having dynamic binding orientation (dynamic ligands) with a control set of isomers that are constrained to bind in a single orientation (constrained ligands). Proliferation of breast cancer cells directed by constrained ligands is associated with DNA binding, coactivator recruitment and activation of the estrogen-induced gene GREB1, reflecting a highly interconnected signaling network. In contrast, proliferation driven by dynamic ligands is associated with induction of ERalpha-mediated transcription in a DNA-binding domain (DBD)-dependent manner. Further, dynamic ligands showed enhanced anti-inflammatory activity. The DBD-dependent profile was predictive of these signaling patterns in a larger diverse set of natural and synthetic ligands. Thus, ligand dynamics directs unique signaling pathways and reveals a new role of the DBD in allosteric control of ERalpha-mediated signaling. Ligand-binding dynamics rewire cellular signaling via estrogen receptor-alpha.,Srinivasan S, Nwachukwu JC, Parent AA, Cavett V, Nowak J, Hughes TS, Kojetin DJ, Katzenellenbogen JA, Nettles KW Nat Chem Biol. 2013 May;9(5):326-32. doi: 10.1038/nchembio.1214. Epub 2013 Mar, 24. PMID:23524984[19] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|