4xby: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 4xby is ON HOLD  until Paper Publication
==Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclopentene oxide==
<StructureSection load='4xby' size='340' side='right'caption='[[4xby]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4xby]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodococcus_erythropolis Rhodococcus erythropolis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XBY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4XBY FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3ZS:(1R,5S)-6-OXABICYCLO[3.1.0]HEXANE'>3ZS</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4xby FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xby OCA], [https://pdbe.org/4xby PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4xby RCSB], [https://www.ebi.ac.uk/pdbsum/4xby PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4xby ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/LIMA_RHOER LIMA_RHOER] Catalyzes the conversion of limonene-1,2-epoxide to limonene-1,2-diol. Can use both the (-) and (+) isomers of limonene-1,2-epoxide as substrates and also has some activity with 1-methylcyclohexene oxide, cyclohexene oxide and indene oxide as substrates.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme.


Authors: Kong, X.D., Sun, Z., Xu, J.H., Reetz, M.T., Zhou, J.
Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution.,Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT Angew Chem Int Ed Engl. 2015 Apr 17. doi: 10.1002/anie.201501809. PMID:25891639<ref>PMID:25891639</ref>


Description: Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclopentene oxide
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[Category: Unreleased Structures]]
</div>
[[Category: Sun, Z]]
<div class="pdbe-citations 4xby" style="background-color:#fffaf0;"></div>
[[Category: Xu, J.H]]
 
[[Category: Kong, X.D]]
==See Also==
[[Category: Reetz, M.T]]
*[[Epoxide hydrolase 3D structures|Epoxide hydrolase 3D structures]]
[[Category: Zhou, J]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Rhodococcus erythropolis]]
[[Category: Kong XD]]
[[Category: Reetz MT]]
[[Category: Sun Z]]
[[Category: Xu JH]]
[[Category: Zhou J]]

Latest revision as of 18:26, 8 November 2023

Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclopentene oxideCrystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclopentene oxide

Structural highlights

4xby is a 8 chain structure with sequence from Rhodococcus erythropolis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LIMA_RHOER Catalyzes the conversion of limonene-1,2-epoxide to limonene-1,2-diol. Can use both the (-) and (+) isomers of limonene-1,2-epoxide as substrates and also has some activity with 1-methylcyclohexene oxide, cyclohexene oxide and indene oxide as substrates.

Publication Abstract from PubMed

Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme.

Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution.,Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT Angew Chem Int Ed Engl. 2015 Apr 17. doi: 10.1002/anie.201501809. PMID:25891639[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew Chem Int Ed Engl. 2015 Apr 17. doi: 10.1002/anie.201501809. PMID:25891639 doi:http://dx.doi.org/10.1002/anie.201501809

4xby, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA