3ajp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Crystal structure of human H ferritin E140A mutant==
==Crystal structure of human H ferritin E140A mutant==
<StructureSection load='3ajp' size='340' side='right' caption='[[3ajp]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='3ajp' size='340' side='right'caption='[[3ajp]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3ajp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AJP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3AJP FirstGlance]. <br>
<table><tr><td colspan='2'>[[3ajp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3AJP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3AJP FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.901&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ajo|3ajo]], [[3ajq|3ajq]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FTH1, FTH, FTHL6, OK/SW-cl.84, PIG15 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ajp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ajp OCA], [https://pdbe.org/3ajp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ajp RCSB], [https://www.ebi.ac.uk/pdbsum/3ajp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ajp ProSAT]</span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ferroxidase Ferroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.3.1 1.16.3.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ajp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ajp OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3ajp RCSB], [http://www.ebi.ac.uk/pdbsum/3ajp PDBsum]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/FRIH_HUMAN FRIH_HUMAN]] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity).  
[https://www.uniprot.org/uniprot/FRIH_HUMAN FRIH_HUMAN] Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity).
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/aj/3ajp_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/aj/3ajp_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3ajp ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Ferritins are ubiquitous iron storage proteins. Recently, we identified a novel metal-binding site, transit site, in the crystal structure of phytoferritin. To elucidate the function of the transit site in ferritin from other species, we prepared transit-site-deficient mutants of human H ferritin, E140A and E140Q, and their iron oxidation kinetics was analyzed. The initial velocities of iron oxidization were reduced in the variants, especially in E140Q. The crystal structure of E140Q showed that the side chain of the mutated Gln140 was fixed by a hydrogen bond, whereas that of native Glu140 was flexible. These results suggest that the conserved transit site also has a function to assist with the metal ion sequestration to the ferroxidase site in ferritins from vertebrates.
The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site.,Masuda T, Goto F, Yoshihara T, Mikami B Biochem Biophys Res Commun. 2010 Aug 10. PMID:20705053<ref>PMID:20705053</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Ferritin|Ferritin]]
*[[Ferritin 3D structures|Ferritin 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Ferroxidase]]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Masuda, T]]
[[Category: Large Structures]]
[[Category: Mikami, B]]
[[Category: Masuda T]]
[[Category: 4-helix bundle]]
[[Category: Mikami B]]
[[Category: Oxidoreductase]]

Latest revision as of 17:00, 13 March 2024

Crystal structure of human H ferritin E140A mutantCrystal structure of human H ferritin E140A mutant

Structural highlights

3ajp is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.901Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FRIH_HUMAN Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity. Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation. Also plays a role in delivery of iron to cells. Mediates iron uptake in capsule cells of the developing kidney (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

3ajp, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA