2d97: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2d97.gif|left|200px]]


{{Structure
==Structure of VIL-xylanase==
|PDB= 2d97 |SIZE=350|CAPTION= <scene name='initialview01'>2d97</scene>, resolution 2.01&Aring;
<StructureSection load='2d97' size='340' side='right'caption='[[2d97]], [[Resolution|resolution]] 2.01&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND=  
<table><tr><td colspan='2'>[[2d97]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2D97 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2D97 FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Endo-1,4-beta-xylanase Endo-1,4-beta-xylanase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.8 3.2.1.8]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.01&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IYR:3-IODO-TYROSINE'>IYR</scene>, <scene name='pdbligand=TYI:3,5-DIIODOTYROSINE'>TYI</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2d97 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2d97 OCA], [https://pdbe.org/2d97 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2d97 RCSB], [https://www.ebi.ac.uk/pdbsum/2d97 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2d97 ProSAT]</span></td></tr>
 
</table>
'''Structure of VIL-xylanase'''
== Evolutionary Conservation ==
 
[[Image:Consurf_key_small.gif|200px|right]]
 
Check<jmol>
==Overview==
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/d9/2d97_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2d97 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
New techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine labelling (VIL) technique, a small amount of KI/I(2) solution is enclosed in a crystallization well, with the result that gaseous I(2) molecules diffuse into the crystallization droplets without exerting substantial changes in ionic strength in the target crystals. Once they have diffused into the droplet, the I(2) molecules sometimes iodinate accessible tyrosines at ortho positions. Secondly, when iodination is insufficient, the hydrogen peroxide VIL (HYPER-VIL) technique can be further applied to increase the iodination ratio by the addition of a small droplet of hydrogen peroxide (H(2)O(2)) to the crystallization well; the gaseous H(2)O(2) also diffuses into the crystallization droplet to emphasize the iodination. These techniques are most effective for phase determination when coupled with softer X-rays, such as those from Cu Kalpha or Cr Kalpha radiation. The effectiveness of these techniques was assessed using five different crystals. Four of the crystals were successfully iodinated, providing sufficient phasing power for structure determination.
New techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine labelling (VIL) technique, a small amount of KI/I(2) solution is enclosed in a crystallization well, with the result that gaseous I(2) molecules diffuse into the crystallization droplets without exerting substantial changes in ionic strength in the target crystals. Once they have diffused into the droplet, the I(2) molecules sometimes iodinate accessible tyrosines at ortho positions. Secondly, when iodination is insufficient, the hydrogen peroxide VIL (HYPER-VIL) technique can be further applied to increase the iodination ratio by the addition of a small droplet of hydrogen peroxide (H(2)O(2)) to the crystallization well; the gaseous H(2)O(2) also diffuses into the crystallization droplet to emphasize the iodination. These techniques are most effective for phase determination when coupled with softer X-rays, such as those from Cu Kalpha or Cr Kalpha radiation. The effectiveness of these techniques was assessed using five different crystals. Four of the crystals were successfully iodinated, providing sufficient phasing power for structure determination.


==About this Structure==
New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL).,Miyatake H, Hasegawa T, Yamano A Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):280-9. Epub 2006, Feb 22. PMID:16510975<ref>PMID:16510975</ref>
2D97 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Hypocrea_jecorina Hypocrea jecorina]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2D97 OCA].
 
==Reference==
New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL)., Miyatake H, Hasegawa T, Yamano A, Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):280-9. Epub 2006, Feb 22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16510975 16510975]
[[Category: Endo-1,4-beta-xylanase]]
[[Category: Hypocrea jecorina]]
[[Category: Single protein]]
[[Category: Hasegawa, T.]]
[[Category: Miyatake, H.]]
[[Category: Yamano, A.]]
[[Category: iodo-tyrosine]]
[[Category: vaporizing iodine labeling(vil)]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 16:24:28 2008''
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2d97" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Trichoderma reesei]]
[[Category: Hasegawa T]]
[[Category: Miyatake H]]
[[Category: Yamano A]]

Latest revision as of 03:51, 21 November 2024

Structure of VIL-xylanaseStructure of VIL-xylanase

Structural highlights

2d97 is a 1 chain structure with sequence from Trichoderma reesei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.01Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

New techniques are presented for the preparation of iodine derivatives, involving vapour diffusion of iodine. Firstly, in the vaporizing iodine labelling (VIL) technique, a small amount of KI/I(2) solution is enclosed in a crystallization well, with the result that gaseous I(2) molecules diffuse into the crystallization droplets without exerting substantial changes in ionic strength in the target crystals. Once they have diffused into the droplet, the I(2) molecules sometimes iodinate accessible tyrosines at ortho positions. Secondly, when iodination is insufficient, the hydrogen peroxide VIL (HYPER-VIL) technique can be further applied to increase the iodination ratio by the addition of a small droplet of hydrogen peroxide (H(2)O(2)) to the crystallization well; the gaseous H(2)O(2) also diffuses into the crystallization droplet to emphasize the iodination. These techniques are most effective for phase determination when coupled with softer X-rays, such as those from Cu Kalpha or Cr Kalpha radiation. The effectiveness of these techniques was assessed using five different crystals. Four of the crystals were successfully iodinated, providing sufficient phasing power for structure determination.

New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL).,Miyatake H, Hasegawa T, Yamano A Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):280-9. Epub 2006, Feb 22. PMID:16510975[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Miyatake H, Hasegawa T, Yamano A. New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL). Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):280-9. Epub 2006, Feb 22. PMID:16510975 doi:10.1107/S0907444905041909

2d97, resolution 2.01Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA