3ho6: Difference between revisions

No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in clostridium difficile toxin A==
==Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in clostridium difficile toxin A==
<StructureSection load='3ho6' size='340' side='right' caption='[[3ho6]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
<StructureSection load='3ho6' size='340' side='right'caption='[[3ho6]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3ho6]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/[clostridium]_difficile [clostridium] difficile]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HO6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3HO6 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3ho6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridioides_difficile Clostridioides difficile]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3HO6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3HO6 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=IHP:INOSITOL+HEXAKISPHOSPHATE'>IHP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tcdA, toxA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1496 [Clostridium] difficile])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=IHP:INOSITOL+HEXAKISPHOSPHATE'>IHP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ho6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ho6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3ho6 RCSB], [http://www.ebi.ac.uk/pdbsum/3ho6 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ho6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ho6 OCA], [https://pdbe.org/3ho6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ho6 RCSB], [https://www.ebi.ac.uk/pdbsum/3ho6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ho6 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TOXA_CLODI TOXA_CLODI]] Only after the enteral delivery of the enterotoxin A may the characteristic disease called pseudomembranous colitis be induced.  
[https://www.uniprot.org/uniprot/TCDA_CLODI TCDA_CLODI] Precursor of a cytotoxin that targets and disrupts the colonic epithelium, inducing the host inflammatory and innate immune responses and resulting in diarrhea and pseudomembranous colitis (PubMed:20844489). TcdA and TcdB constitute the main toxins that mediate the pathology of C.difficile infection, an opportunistic pathogen that colonizes the colon when the normal gut microbiome is disrupted (PubMed:19252482, PubMed:20844489). Compared to TcdB, TcdA is less virulent and less important for inducing the host inflammatory and innate immune responses (PubMed:19252482). This form constitutes the precursor of the toxin: it enters into host cells and mediates autoprocessing to release the active toxin (Glucosyltransferase TcdA) into the host cytosol (By similarity). Targets colonic epithelia by binding to some receptor, and enters host cells via clathrin-mediated endocytosis (By similarity). Binding to LDLR, as well as carbohydrates and sulfated glycosaminoglycans on host cell surface contribute to entry into cells (PubMed:1670930, PubMed:31160825, PubMed:16622409). In contrast to TcdB, Frizzled receptors FZD1, FZD2 and FZD7 do not act as host receptors in the colonic epithelium for TcdA (PubMed:27680706). Once entered into host cells, acidification in the endosome promotes the membrane insertion of the translocation region and formation of a pore, leading to translocation of the GT44 and peptidase C80 domains across the endosomal membrane (By similarity). This activates the peptidase C80 domain and autocatalytic processing, releasing the N-terminal part (Glucosyltransferase TcdA), which constitutes the active part of the toxin, in the cytosol (PubMed:17334356, PubMed:19553670, PubMed:27571750).[UniProtKB:P18177]<ref>PMID:16622409</ref> <ref>PMID:1670930</ref> <ref>PMID:17334356</ref> <ref>PMID:19252482</ref> <ref>PMID:19553670</ref> <ref>PMID:20844489</ref> <ref>PMID:27571750</ref> <ref>PMID:27680706</ref> <ref>PMID:31160825</ref>  Active form of the toxin, which is released into the host cytosol following autoprocessing and inactivates small GTPases (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Acts by mediating monoglucosylation of small GTPases of the Rho family (Rac1, RhoA, RhoB, RhoC, Rap2A and Cdc42) in host cells at the conserved threonine residue located in the switch I region ('Thr-37/35'), using UDP-alpha-D-glucose as the sugar donor (PubMed:7775453, PubMed:24905543, PubMed:30622517, PubMed:22747490, PubMed:22267739). Monoglucosylation of host small GTPases completely prevents the recognition of the downstream effector, blocking the GTPases in their inactive form, leading to actin cytoskeleton disruption and cell death, resulting in the loss of colonic epithelial barrier function (PubMed:7775453). Also able to catalyze monoglucosylation of some members of the Ras family (H-Ras/HRAS, K-Ras/KRAS and N-Ras/NRAS), but with much less efficiency than with Rho proteins, suggesting that it does not act on Ras proteins in vivo (PubMed:30622517).<ref>PMID:22267739</ref> <ref>PMID:22747490</ref> <ref>PMID:24905543</ref> <ref>PMID:30622517</ref> <ref>PMID:7775453</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ho/3ho6_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ho/3ho6_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3ho6 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 A x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a beta-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a pi-cation interaction within the beta-flap that appear to be unique among the large clostridial cytotoxins.
Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.,Pruitt RN, Chagot B, Cover M, Chazin WJ, Spiller B, Lacy DB J Biol Chem. 2009 Aug 14;284(33):21934-40. Epub 2009 Jun 24. PMID:19553670<ref>PMID:19553670</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Lacy, D B]]
[[Category: Clostridioides difficile]]
[[Category: Pruitt, R N]]
[[Category: Large Structures]]
[[Category: Enterotoxin]]
[[Category: Lacy DB]]
[[Category: Inositol phosphate]]
[[Category: Pruitt RN]]
[[Category: Toxin]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA