4ued: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Complex of human eIF4E with the 4E binding protein 4E-BP1== | ||
<StructureSection load='4ued' size='340' side='right'caption='[[4ued]], [[Resolution|resolution]] 1.75Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4ued]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UED OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4UED FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ued FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ued OCA], [https://pdbe.org/4ued PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ued RCSB], [https://www.ebi.ac.uk/pdbsum/4ued PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ued ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/IF4E_HUMAN IF4E_HUMAN] Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap.<ref>PMID:16271312</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The eIF4E-binding proteins (4E-BPs) represent a diverse class of translation inhibitors that are often deregulated in cancer cells. 4E-BPs inhibit translation by competing with eIF4G for binding to eIF4E through an interface that consists of canonical and non-canonical eIF4E-binding motifs connected by a linker. The lack of high-resolution structures including the linkers, which contain phosphorylation sites, limits our understanding of how phosphorylation inhibits complex formation. Furthermore, the binding mechanism of the non-canonical motifs is poorly understood. Here, we present structures of human eIF4E bound to 4E-BP1 and fly eIF4E bound to Thor, 4E-T, and eIF4G. These structures reveal architectural elements that are unique to 4E-BPs and provide insight into the consequences of phosphorylation. Guided by these structures, we designed and crystallized a 4E-BP mimic that shows increased repressive activity. Our studies pave the way for the rational design of 4E-BP mimics as therapeutic tools to decrease translation during oncogenic transformation. | |||
Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E.,Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, Weichenrieder O, Izaurralde E Mol Cell. 2015 Feb 18. pii: S1097-2765(15)00018-0. doi:, 10.1016/j.molcel.2015.01.017. PMID:25702871<ref>PMID:25702871</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: Peter | <div class="pdbe-citations 4ued" style="background-color:#fffaf0;"></div> | ||
[[Category: Weichenrieder | |||
==See Also== | |||
*[[Eukaryotic initiation factor 3D structures|Eukaryotic initiation factor 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Peter D]] | |||
[[Category: Weichenrieder O]] |
Latest revision as of 15:29, 20 December 2023
Complex of human eIF4E with the 4E binding protein 4E-BP1Complex of human eIF4E with the 4E binding protein 4E-BP1
Structural highlights
FunctionIF4E_HUMAN Its translation stimulation activity is repressed by binding to the complex CYFIP1-FMR1 (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit mediates the binding to the mRNA cap.[1] Publication Abstract from PubMedThe eIF4E-binding proteins (4E-BPs) represent a diverse class of translation inhibitors that are often deregulated in cancer cells. 4E-BPs inhibit translation by competing with eIF4G for binding to eIF4E through an interface that consists of canonical and non-canonical eIF4E-binding motifs connected by a linker. The lack of high-resolution structures including the linkers, which contain phosphorylation sites, limits our understanding of how phosphorylation inhibits complex formation. Furthermore, the binding mechanism of the non-canonical motifs is poorly understood. Here, we present structures of human eIF4E bound to 4E-BP1 and fly eIF4E bound to Thor, 4E-T, and eIF4G. These structures reveal architectural elements that are unique to 4E-BPs and provide insight into the consequences of phosphorylation. Guided by these structures, we designed and crystallized a 4E-BP mimic that shows increased repressive activity. Our studies pave the way for the rational design of 4E-BP mimics as therapeutic tools to decrease translation during oncogenic transformation. Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E.,Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, Weichenrieder O, Izaurralde E Mol Cell. 2015 Feb 18. pii: S1097-2765(15)00018-0. doi:, 10.1016/j.molcel.2015.01.017. PMID:25702871[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|