1yf6: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1yf6.gif|left|200px]]


{{Structure
==Structure of a quintuple mutant of photosynthetic reaction center from rhodobacter sphaeroides==
|PDB= 1yf6 |SIZE=350|CAPTION= <scene name='initialview01'>1yf6</scene>, resolution 2.25&Aring;
<StructureSection load='1yf6' size='340' side='right'caption='[[1yf6]], [[Resolution|resolution]] 2.25&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=BCL:BACTERIOCHLOROPHYLL+A'>BCL</scene>, <scene name='pdbligand=BPH:BACTERIOPHEOPHYTIN+A'>BPH</scene>, <scene name='pdbligand=U10:UBIQUINONE-10'>U10</scene>, <scene name='pdbligand=SPO:SPHEROIDENE'>SPO</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=HTO:HEPTANE-1,2,3-TRIOL'>HTO</scene>, <scene name='pdbligand=LDA:LAURYL+DIMETHYLAMINE-N-OXIDE'>LDA</scene> and <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>
<table><tr><td colspan='2'>[[1yf6]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Cereibacter_sphaeroides Cereibacter sphaeroides]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YF6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YF6 FirstGlance]. <br>
|ACTIVITY=  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.25&#8491;</td></tr>
|GENE= pufL ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1063 Rhodobacter sphaeroides]), pufM ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1063 Rhodobacter sphaeroides]), puhA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1063 Rhodobacter sphaeroides])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BCL:BACTERIOCHLOROPHYLL+A'>BCL</scene>, <scene name='pdbligand=BPH:BACTERIOPHEOPHYTIN+A'>BPH</scene>, <scene name='pdbligand=CDL:CARDIOLIPIN'>CDL</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=HTO:HEPTANE-1,2,3-TRIOL'>HTO</scene>, <scene name='pdbligand=LDA:LAURYL+DIMETHYLAMINE-N-OXIDE'>LDA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=SPO:SPHEROIDENE'>SPO</scene>, <scene name='pdbligand=U10:UBIQUINONE-10'>U10</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1yf6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yf6 OCA], [https://pdbe.org/1yf6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1yf6 RCSB], [https://www.ebi.ac.uk/pdbsum/1yf6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1yf6 ProSAT]</span></td></tr>
 
</table>
'''Structure of a quintuple mutant of photosynthetic reaction center from rhodobacter sphaeroides'''
== Function ==
 
[https://www.uniprot.org/uniprot/RCEL_CERSP RCEL_CERSP] The reaction center is a membrane-bound complex that mediates the initial photochemical event in the electron transfer process of photosynthesis.
 
== Evolutionary Conservation ==
==Overview==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yf/1yf6_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1yf6 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --&gt; Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --&gt; Asp, Tyr-M210 --&gt; Phe, Leu-M214 --&gt; His) and one to promote transfer along the B-branch (Phe-L181 --&gt; Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.
The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --&gt; Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --&gt; Asp, Tyr-M210 --&gt; Phe, Leu-M214 --&gt; His) and one to promote transfer along the B-branch (Phe-L181 --&gt; Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.


==About this Structure==
Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure.,Paddock ML, Chang C, Xu Q, Abresch EC, Axelrod HL, Feher G, Okamura MY Biochemistry. 2005 May 10;44(18):6920-8. PMID:15865437<ref>PMID:15865437</ref>
1YF6 is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Rhodobacter_sphaeroides Rhodobacter sphaeroides]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YF6 OCA].
 
==Reference==
Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure., Paddock ML, Chang C, Xu Q, Abresch EC, Axelrod HL, Feher G, Okamura MY, Biochemistry. 2005 May 10;44(18):6920-8. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15865437 15865437]
[[Category: Protein complex]]
[[Category: Rhodobacter sphaeroides]]
[[Category: Abresch, E C.]]
[[Category: Axelrod, H L.]]
[[Category: Chang, C.]]
[[Category: Paddock, M L.]]
[[Category: Xu, Q.]]
[[Category: BCL]]
[[Category: BPH]]
[[Category: CDL]]
[[Category: CL]]
[[Category: FE2]]
[[Category: GOL]]
[[Category: HTO]]
[[Category: LDA]]
[[Category: PO4]]
[[Category: SPO]]
[[Category: U10]]
[[Category: bacterial photosynthesis]]
[[Category: gated electron transfer]]
[[Category: integral membrane protein]]
[[Category: quinone movement]]
[[Category: rhodobacter sphaeroide]]


''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 15:22:06 2008''
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1yf6" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Cereibacter sphaeroides]]
[[Category: Large Structures]]
[[Category: Abresch EC]]
[[Category: Axelrod HL]]
[[Category: Chang C]]
[[Category: Paddock ML]]
[[Category: Xu Q]]

Latest revision as of 09:56, 23 August 2023

Structure of a quintuple mutant of photosynthetic reaction center from rhodobacter sphaeroidesStructure of a quintuple mutant of photosynthetic reaction center from rhodobacter sphaeroides

Structural highlights

1yf6 is a 3 chain structure with sequence from Cereibacter sphaeroides. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.25Å
Ligands:, , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RCEL_CERSP The reaction center is a membrane-bound complex that mediates the initial photochemical event in the electron transfer process of photosynthesis.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.

Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure.,Paddock ML, Chang C, Xu Q, Abresch EC, Axelrod HL, Feher G, Okamura MY Biochemistry. 2005 May 10;44(18):6920-8. PMID:15865437[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Paddock ML, Chang C, Xu Q, Abresch EC, Axelrod HL, Feher G, Okamura MY. Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure. Biochemistry. 2005 May 10;44(18):6920-8. PMID:15865437 doi:10.1021/bi047559m

1yf6, resolution 2.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA