3x0c: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of PIP4KIIBETA I368A complex with GMP== | |||
<StructureSection load='3x0c' size='340' side='right'caption='[[3x0c]], [[Resolution|resolution]] 2.55Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3x0c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3X0C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3X0C FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.55Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=5GP:GUANOSINE-5-MONOPHOSPHATE'>5GP</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3x0c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3x0c OCA], [https://pdbe.org/3x0c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3x0c RCSB], [https://www.ebi.ac.uk/pdbsum/3x0c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3x0c ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PI42B_HUMAN PI42B_HUMAN] Participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate.<ref>PMID:9038203</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kbeta, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kbeta preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kbeta is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kbeta is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kbeta. The critical role of the GTP-sensing activity of PI5P4Kbeta in cancer signifies this lipid kinase as a cancer therapeutic target. | |||
The Lipid Kinase PI5P4Kbeta Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis.,Sumita K, Lo YH, Takeuchi K, Senda M, Kofuji S, Ikeda Y, Terakawa J, Sasaki M, Yoshino H, Majd N, Zheng Y, Kahoud ER, Yokota T, Emerling BM, Asara JM, Ishida T, Locasale JW, Daikoku T, Anastasiou D, Senda T, Sasaki AT Mol Cell. 2016 Jan 21;61(2):187-98. doi: 10.1016/j.molcel.2015.12.011. Epub 2016 , Jan 7. PMID:26774281<ref>PMID:26774281</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
[[Category: | <div class="pdbe-citations 3x0c" style="background-color:#fffaf0;"></div> | ||
[[Category: | == References == | ||
[[Category: | <references/> | ||
[[Category: | __TOC__ | ||
[[Category: | </StructureSection> | ||
[[Category: | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Asara JA]] | ||
[[Category: | [[Category: Cantley LC]] | ||
[[Category: | [[Category: Daikoku T]] | ||
[[Category: | [[Category: Dimitoris A]] | ||
[[Category: | [[Category: Emerling B]] | ||
[[Category: | [[Category: Ishida T]] | ||
[[Category: | [[Category: Kahoud ER]] | ||
[[Category: | [[Category: Lo YH]] | ||
[[Category: | [[Category: Locasale JW]] | ||
[[Category: | [[Category: Sasaki AT]] | ||
[[Category: | [[Category: Sasaki M]] | ||
[[Category: | [[Category: Senda M]] | ||
[[Category: | [[Category: Senda T]] | ||
[[Category: | [[Category: Shimada I]] | ||
[[Category: Sumita K]] | |||
[[Category: Takano T]] | |||
[[Category: Takeuchi K]] | |||
[[Category: Terakawa J]] | |||
[[Category: Yokota T]] | |||
[[Category: Yoshino H]] | |||
[[Category: Zhang Y]] |
Latest revision as of 16:37, 8 November 2023
Crystal structure of PIP4KIIBETA I368A complex with GMPCrystal structure of PIP4KIIBETA I368A complex with GMP
Structural highlights
FunctionPI42B_HUMAN Participates in the biosynthesis of phosphatidylinositol 4,5-bisphosphate.[1] Publication Abstract from PubMedWhile cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kbeta, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kbeta preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kbeta is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kbeta is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kbeta. The critical role of the GTP-sensing activity of PI5P4Kbeta in cancer signifies this lipid kinase as a cancer therapeutic target. The Lipid Kinase PI5P4Kbeta Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis.,Sumita K, Lo YH, Takeuchi K, Senda M, Kofuji S, Ikeda Y, Terakawa J, Sasaki M, Yoshino H, Majd N, Zheng Y, Kahoud ER, Yokota T, Emerling BM, Asara JM, Ishida T, Locasale JW, Daikoku T, Anastasiou D, Senda T, Sasaki AT Mol Cell. 2016 Jan 21;61(2):187-98. doi: 10.1016/j.molcel.2015.12.011. Epub 2016 , Jan 7. PMID:26774281[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|