1k4c: Difference between revisions
No edit summary |
No edit summary |
||
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Potassium Channel KcsA-Fab complex in high concentration of K+== | |||
<StructureSection load='1k4c' size='340' side='right'caption='[[1k4c]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
| | <table><tr><td colspan='2'>[[1k4c]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Streptomyces_lividans Streptomyces lividans]. The February 2003 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Potassium Channels'' by Shuchismita Dutta and David S. Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2003_2 10.2210/rcsb_pdb/mom_2003_2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1K4C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1K4C FirstGlance]. <br> | ||
| | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | ||
| | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DGA:DIACYL+GLYCEROL'>DGA</scene>, <scene name='pdbligand=F09:NONAN-1-OL'>F09</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1k4c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1k4c OCA], [https://pdbe.org/1k4c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1k4c RCSB], [https://www.ebi.ac.uk/pdbsum/1k4c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1k4c ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/KCSA_STRLI KCSA_STRLI] Acts as a pH-gated potassium ion channel; changing the cytosolic pH from 7 to 4 opens the channel, although it is not clear if this is the physiological stimulus for channel opening. Monovalent cation preference is K(+) > Rb(+) > NH4(+) >> Na(+) > Li(+).<ref>PMID:7489706</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k4/1k4c_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1k4c ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Ion transport proteins must remove an ion's hydration shell to coordinate the ion selectively on the basis of its size and charge. To discover how the K+ channel solves this fundamental aspect of ion conduction, we solved the structure of the KcsA K+ channel in complex with a monoclonal Fab antibody fragment at 2.0 A resolution. Here we show how the K+ channel displaces water molecules around an ion at its extracellular entryway, and how it holds a K+ ion in a square antiprism of water molecules in a cavity near its intracellular entryway. Carbonyl oxygen atoms within the selectivity filter form a very similar square antiprism around each K+ binding site, as if to mimic the waters of hydration. The selectivity filter changes its ion coordination structure in low K+ solutions. This structural change is crucial to the operation of the selectivity filter in the cellular context, where the K+ ion concentration near the selectivity filter varies in response to channel gating. | |||
Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution.,Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R Nature. 2001 Nov 1;414(6859):43-8. PMID:11689936<ref>PMID:11689936</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1k4c" style="background-color:#fffaf0;"></div> | |||
== | ==See Also== | ||
*[[Antibody 3D structures|Antibody 3D structures]] | |||
*[[Potassium Channel|Potassium Channel]] | |||
*[[Potassium channel 3D structures|Potassium channel 3D structures]] | |||
*[[3D structures of non-human antibody|3D structures of non-human antibody]] | |||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
[[Category: Potassium Channels]] | [[Category: Potassium Channels]] | ||
[[Category: | [[Category: RCSB PDB Molecule of the Month]] | ||
[[Category: Streptomyces lividans]] | [[Category: Streptomyces lividans]] | ||
[[Category: Kaufman | [[Category: Kaufman A]] | ||
[[Category: MacKinnon | [[Category: MacKinnon R]] | ||
[[Category: Morais-Cabral | [[Category: Morais-Cabral JH]] | ||
[[Category: Zhou | [[Category: Zhou Y]] | ||
Latest revision as of 09:52, 30 October 2024
Potassium Channel KcsA-Fab complex in high concentration of K+Potassium Channel KcsA-Fab complex in high concentration of K+
Structural highlights
FunctionKCSA_STRLI Acts as a pH-gated potassium ion channel; changing the cytosolic pH from 7 to 4 opens the channel, although it is not clear if this is the physiological stimulus for channel opening. Monovalent cation preference is K(+) > Rb(+) > NH4(+) >> Na(+) > Li(+).[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIon transport proteins must remove an ion's hydration shell to coordinate the ion selectively on the basis of its size and charge. To discover how the K+ channel solves this fundamental aspect of ion conduction, we solved the structure of the KcsA K+ channel in complex with a monoclonal Fab antibody fragment at 2.0 A resolution. Here we show how the K+ channel displaces water molecules around an ion at its extracellular entryway, and how it holds a K+ ion in a square antiprism of water molecules in a cavity near its intracellular entryway. Carbonyl oxygen atoms within the selectivity filter form a very similar square antiprism around each K+ binding site, as if to mimic the waters of hydration. The selectivity filter changes its ion coordination structure in low K+ solutions. This structural change is crucial to the operation of the selectivity filter in the cellular context, where the K+ ion concentration near the selectivity filter varies in response to channel gating. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution.,Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R Nature. 2001 Nov 1;414(6859):43-8. PMID:11689936[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References
|
|