1iwv: Difference between revisions

No edit summary
No edit summary
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1iwv.jpg|left|200px]]


{{Structure
==Crystal Structure Analysis of Human lysozyme at 147K.==
|PDB= 1iwv |SIZE=350|CAPTION= <scene name='initialview01'>1iwv</scene>, resolution 1.4&Aring;
<StructureSection load='1iwv' size='340' side='right'caption='[[1iwv]], [[Resolution|resolution]] 1.40&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=CL:CHLORIDE ION'>CL</scene>
<table><tr><td colspan='2'>[[1iwv]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IWV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IWV FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1iwv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1iwv OCA], [https://pdbe.org/1iwv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1iwv RCSB], [https://www.ebi.ac.uk/pdbsum/1iwv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1iwv ProSAT]</span></td></tr>
 
</table>
'''Crystal Structure Analysis of Human lysozyme at 147K.'''
== Disease ==
 
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref>
 
== Function ==
==Overview==
[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/iw/1iwv_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1iwv ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The static and dynamic structures of human lysozyme at seven different temperatures ranging from 113 to 178 K were investigated by normal-mode refinement of the cryogenic X-ray diffraction data collected from a single crystal. Normal-mode refinement decomposes the mean-square fluctuations of protein atoms from their average position into the contributions from the internal degrees of freedom, which change the shape of the protein structure, and those from the external degrees of freedom, which generate rigid-body motions in the crystal. While at temperatures below 150 K the temperature dependence of the total mean-square fluctuations shows a small gradient similar to that predicted theoretically by normal-mode analysis, at temperatures above 150 K there is an apparent inflection in the temperature dependence with a higher gradient. The inflection in the temperature dependence at temperatures above 150 K occurs mostly in the external degrees of freedom. Possible causes for the dynamic transition are discussed with respect to the crystal packing and physicochemical properties of crystalline water.
The static and dynamic structures of human lysozyme at seven different temperatures ranging from 113 to 178 K were investigated by normal-mode refinement of the cryogenic X-ray diffraction data collected from a single crystal. Normal-mode refinement decomposes the mean-square fluctuations of protein atoms from their average position into the contributions from the internal degrees of freedom, which change the shape of the protein structure, and those from the external degrees of freedom, which generate rigid-body motions in the crystal. While at temperatures below 150 K the temperature dependence of the total mean-square fluctuations shows a small gradient similar to that predicted theoretically by normal-mode analysis, at temperatures above 150 K there is an apparent inflection in the temperature dependence with a higher gradient. The inflection in the temperature dependence at temperatures above 150 K occurs mostly in the external degrees of freedom. Possible causes for the dynamic transition are discussed with respect to the crystal packing and physicochemical properties of crystalline water.


==Disease==
Nonlinear temperature dependence of the crystal structure of lysozyme: correlation between coordinate shifts and thermal factors.,Joti Y, Nakasako M, Kidera A, Go N Acta Crystallogr D Biol Crystallogr. 2002 Sep;58(Pt 9):1421-32. Epub 2002, Aug 23. PMID:12198298<ref>PMID:12198298</ref>
Known diseases associated with this structure: Amyloidosis, renal OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=153450 153450]], Microphthalmia, syndromic 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=309800 309800]]


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1IWV is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IWV OCA].
</div>
<div class="pdbe-citations 1iwv" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
Nonlinear temperature dependence of the crystal structure of lysozyme: correlation between coordinate shifts and thermal factors., Joti Y, Nakasako M, Kidera A, Go N, Acta Crystallogr D Biol Crystallogr. 2002 Sep;58(Pt 9):1421-32. Epub 2002, Aug 23. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12198298 12198298]
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Lysozyme]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Go N]]
[[Category: Go, N.]]
[[Category: Joti Y]]
[[Category: Joti, Y.]]
[[Category: Kidera A]]
[[Category: Kidera, A.]]
[[Category: Nakasako M]]
[[Category: Nakasako, M.]]
[[Category: CL]]
[[Category: glycosydase]]
[[Category: o-glycosyl]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 11:55:58 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA