3ev4: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal Structure of Ribonuclease A in 50% Trifluoroethanol== | ==Crystal Structure of Ribonuclease A in 50% Trifluoroethanol== | ||
<StructureSection load='3ev4' size='340' side='right' caption='[[3ev4]], [[Resolution|resolution]] 1.93Å' scene=''> | <StructureSection load='3ev4' size='340' side='right'caption='[[3ev4]], [[Resolution|resolution]] 1.93Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[3ev4]] is a 2 chain structure with sequence from [ | <table><tr><td colspan='2'>[[3ev4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EV4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EV4 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.93Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ETF:TRIFLUOROETHANOL'>ETF</scene></td></tr> | |||
<tr><td class="sblockLbl"><b> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ev4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ev4 OCA], [https://pdbe.org/3ev4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ev4 RCSB], [https://www.ebi.ac.uk/pdbsum/3ev4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ev4 ProSAT]</span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </table> | ||
<table> | == Function == | ||
[https://www.uniprot.org/uniprot/RNAS1_BOVIN RNAS1_BOVIN] Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.<ref>PMID:7479688</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ev/3ev4_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ev/3ev4_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3ev4 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 26: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 3ev4" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Ribonuclease|Ribonuclease]] | *[[Ribonuclease 3D structures|Ribonuclease 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 34: | Line 37: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Dechene | [[Category: Dechene M]] | ||
[[Category: Mattos | [[Category: Mattos C]] | ||
[[Category: Smith | [[Category: Smith M]] | ||
[[Category: Swartz | [[Category: Swartz P]] | ||
[[Category: Wink | [[Category: Wink G]] | ||
Latest revision as of 12:05, 30 October 2024
Crystal Structure of Ribonuclease A in 50% TrifluoroethanolCrystal Structure of Ribonuclease A in 50% Trifluoroethanol
Structural highlights
FunctionRNAS1_BOVIN Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single stranded and double stranded RNA.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) and with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS. Proteins 2009. (c) 2009 Wiley-Liss, Inc. Multiple solvent crystal structures of ribonuclease A: An assessment of the method.,Dechene M, Wink G, Smith M, Swartz P, Mattos C Proteins. 2009 Feb 2. PMID:19291738[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|