1x29: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-2-methyl-L-glutamic acid==
==Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-2-methyl-L-glutamic acid==
<StructureSection load='1x29' size='340' side='right' caption='[[1x29]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
<StructureSection load='1x29' size='340' side='right'caption='[[1x29]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1x29]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X29 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1X29 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1x29]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X29 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1X29 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PMG:N-({3-HYDROXY-2-METHYL-5-[(PHOSPHONOOXY)METHYL]PYRIDIN-4-YL}METHYL)-2-METHYL-L-GLUTAMIC+ACID'>PMG</scene><br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1x28|1x28]], [[1x2a|1x2a]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PMG:N-({3-HYDROXY-2-METHYL-5-[(PHOSPHONOOXY)METHYL]PYRIDIN-4-YL}METHYL)-2-METHYL-L-GLUTAMIC+ACID'>PMG</scene></td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aspartate_transaminase Aspartate transaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.1 2.6.1.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1x29 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1x29 OCA], [https://pdbe.org/1x29 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1x29 RCSB], [https://www.ebi.ac.uk/pdbsum/1x29 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1x29 ProSAT]</span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1x29 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1x29 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1x29 RCSB], [http://www.ebi.ac.uk/pdbsum/1x29 PDBsum]</span></td></tr>
</table>
<table>
== Function ==
[https://www.uniprot.org/uniprot/AAT_ECOLI AAT_ECOLI]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x2/1x29_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x2/1x29_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1x29 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The mechanism for the reaction of aspartate aminotransferase with the C4 substrate, l-aspartate, has been well established. The binding of the C4 substrate induces conformational change in the enzyme from the open to the closed form, and the entire reaction proceeds in the closed form of the enzyme. On the contrary, little is known about the reaction with the C5 substrate, l-glutamate. In this study, we analyzed the pH-dependent binding of 2-methyl-l-glutamate to the enzyme and showed that the interaction between the amino group of 2-methyl-l-glutamate and the pyridoxal 5'-phosphate aldimine is weak compared to that between 2-methyl-l-aspartate and the aldimine. The structures of the Michaelis complexes of the enzyme with l-aspartate and l-glutamate were modeled on the basis of the maleate and glutarate complex structures of the enzyme. The result showed that l-glutamate binds to the open form of the enzyme in an extended conformation, and its alpha-amino group points in the opposite direction of the aldimine, while that of l-aspartate is close to the aldimine. These models explain the observations for 2-methyl-l-glutamate and 2-methyl-l-aspartate. The crystal structures of the complexes of aspartate aminotransferase with phosphopyridoxyl derivatives of l-glutamate, d-glutamate, and 2-methyl-l-glutamate were solved as the models for the external aldimine and ketimine complexes of l-glutamate. All the structures were in the closed form, and the two carboxylate groups and the arginine residues binding them are superimposable on the external aldimine complex with 2-methyl-l-aspartate. Taking these facts altogether, it was strongly suggested that the binding of l-glutamate to aspartate aminotransferase to form the Michaelis complex does not induce a conformational change in the enzyme, and that the conformational change to the closed form occurs during the transaldimination step. The hydrophobic residues of the entrance of the active site, including Tyr70, are considered to be important for promoting the transaldimination process and hence the recognition of the C5 substrate.
Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.,Islam MM, Goto M, Miyahara I, Ikushiro H, Hirotsu K, Hayashi H Biochemistry. 2005 Jun 14;44(23):8218-29. PMID:15938611<ref>PMID:15938611</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Aspartate Aminotransferase|Aspartate Aminotransferase]]
*[[Aspartate aminotransferase 3D structures|Aspartate aminotransferase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Aspartate transaminase]]
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Goto, M.]]
[[Category: Large Structures]]
[[Category: Plp-dependent enzyme]]
[[Category: Goto M]]
[[Category: Transferase]]

Latest revision as of 16:36, 13 March 2024

Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-2-methyl-L-glutamic acidCrystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-2-methyl-L-glutamic acid

Structural highlights

1x29 is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AAT_ECOLI

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

1x29, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA