1f98: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==CRYSTAL STRUCTURE OF THE PHOTOACTIVE YELLOW PROTEIN MUTANT T50V==
==CRYSTAL STRUCTURE OF THE PHOTOACTIVE YELLOW PROTEIN MUTANT T50V==
<StructureSection load='1f98' size='340' side='right' caption='[[1f98]], [[Resolution|resolution]] 1.15&Aring;' scene=''>
<StructureSection load='1f98' size='340' side='right'caption='[[1f98]], [[Resolution|resolution]] 1.15&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1f98]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Halorhodospira_halophila Halorhodospira halophila]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F98 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1F98 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1f98]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Halorhodospira_halophila Halorhodospira halophila]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F98 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1F98 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HC4:4-HYDROXYCINNAMIC+ACID'>HC4</scene><br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.15&#8491;</td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2phy|2phy]], [[1f9i|1f9i]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HC4:4-HYDROXYCINNAMIC+ACID'>HC4</scene></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1f98 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1f98 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1f98 RCSB], [http://www.ebi.ac.uk/pdbsum/1f98 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1f98 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1f98 OCA], [https://pdbe.org/1f98 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1f98 RCSB], [https://www.ebi.ac.uk/pdbsum/1f98 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1f98 ProSAT]</span></td></tr>
<table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PYP_HALHA PYP_HALHA] Photoactive blue light protein. Probably functions as a photoreceptor for a negative phototaxis response.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f9/1f98_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f9/1f98_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1f98 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
To understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal, we are characterizing photoactive yellow protein (PYP), a water-soluble, 14 kDa blue-light receptor which undergoes a photocycle upon illumination. The active site residues glutamic acid 46, arginine 52, tyrosine 42, and threonine 50 form a hydrogen bond network with the anionic p-hydroxycinnamoyl cysteine 69 chromophore in the PYP ground state, suggesting an essential role for these residues for the maintenance of the chromophore's negative charge, the photocycle kinetics, the signaling mechanism, and the protein stability. Here, we describe the role of T50 and Y42 by use of site-specific mutants. T50 and Y42 are involved in fine-tuning the chromophore's absorption maximum. The high-resolution X-ray structures show that the hydrogen-bonding interactions between the protein and the chromophore are weakened in the mutants, leading to increased electron density on the chromophore's aromatic ring and consequently to a red shift of its absorption maximum from 446 nm to 457 and 458 nm in the mutants T50V and Y42F, respectively. Both mutants have slightly perturbed photocycle kinetics and, similar to the R52A mutant, are bleached more rapidly and recover more slowly than the wild type. The effect of pH on the kinetics is similar to wild-type PYP, suggesting that T50 and Y42 are not directly involved in any protonation or deprotonation events that control the speed of the light cycle. The unfolding energies, 26.8 and 25.1 kJ/mol for T50V and Y42F, respectively, are decreased when compared to that of the wild type (29.7 kJ/mol). In the mutant Y42F, the reduced protein stability gives rise to a second PYP population with an altered chromophore conformation as shown by UV/visible and FT Raman spectroscopy. The second chromophore conformation gives rise to a shoulder at 391 nm in the UV/visible absorption spectrum and indicates that the hydrogen bond between Y42 and the chromophore is crucial for the stabilization of the native chromophore and protein conformation. The two conformations in the Y42F mutant can be interconverted by chaotropic and kosmotropic agents, respectively, according to the Hofmeister series. The FT Raman spectra and the acid titration curves suggest that the 391 nm form of the chromophore is not fully protonated. The fluorescence quantum yield of the mutant Y42F is 1.8% and is increased by an order of magnitude when compared to the wild type.
Coupling of hydrogen bonding to chromophore conformation and function in photoactive yellow protein.,Brudler R, Meyer TE, Genick UK, Devanathan S, Woo TT, Millar DP, Gerwert K, Cusanovich MA, Tollin G, Getzoff ED Biochemistry. 2000 Nov 7;39(44):13478-86. PMID:11063584<ref>PMID:11063584</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Halorhodospira halophila]]
[[Category: Halorhodospira halophila]]
[[Category: Brudler, R.]]
[[Category: Large Structures]]
[[Category: Genick, U K.]]
[[Category: Brudler R]]
[[Category: Getzoff, E D.]]
[[Category: Genick UK]]
[[Category: Meyer, T E.]]
[[Category: Getzoff ED]]
[[Category: Tollin, G.]]
[[Category: Meyer TE]]
[[Category: Light-sensor for negative phototaxis]]
[[Category: Tollin G]]
[[Category: Photoreceptor]]
[[Category: Signaling protein]]

Latest revision as of 13:12, 20 March 2024

CRYSTAL STRUCTURE OF THE PHOTOACTIVE YELLOW PROTEIN MUTANT T50VCRYSTAL STRUCTURE OF THE PHOTOACTIVE YELLOW PROTEIN MUTANT T50V

Structural highlights

1f98 is a 1 chain structure with sequence from Halorhodospira halophila. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.15Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PYP_HALHA Photoactive blue light protein. Probably functions as a photoreceptor for a negative phototaxis response.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

1f98, resolution 1.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA