4r3l: Difference between revisions
m Protected "4r3l" [edit=sysop:move=sysop] |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus bound to substrate peptide fragment and CoA== | |||
<StructureSection load='4r3l' size='340' side='right'caption='[[4r3l]], [[Resolution|resolution]] 1.84Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4r3l]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus Saccharolobus solfataricus] and [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus_P2 Saccharolobus solfataricus P2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4R3L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4R3L FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.839Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=COA:COENZYME+A'>COA</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4r3l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4r3l OCA], [https://pdbe.org/4r3l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4r3l RCSB], [https://www.ebi.ac.uk/pdbsum/4r3l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4r3l ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/NAT_SACS2 NAT_SACS2] Displays alpha (N-terminal) acetyltransferase activity. Catalyzes the covalent attachment of an acetyl moiety from acetyl-CoA to the free alpha-amino group at the N-terminus of a protein (PubMed:17511810, PubMed:23959863, PubMed:25728374). NAT is able to acetylate the alpha-amino group of methionine, alanine and serine N-terminal residue substrates, however it has a preference for Ser-N-terminal substrates (PubMed:17511810, PubMed:23959863, PubMed:25728374).<ref>PMID:17511810</ref> <ref>PMID:23959863</ref> <ref>PMID:25728374</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Nalpha-acetyltransferases (Nats) possess a wide range of important biological functions. Their structures can vary according to the first two residues of their substrate. However, the mechanisms of substrate recognition and catalysis of Nats are elusive. Here, we present two structure of Sulfolobus solfataricus Ard1 (SsArd1), a member of the NatA family, at 2.13 and 1.84 A. Both structures contain coenzyme A, while the latter also contains a substrate-derived peptide. Sequential structure-based mutagenesis revealed that mutations of critical residues for CoA binding decreased the binding affinity of SsArd1 by 3 ~ 7-fold. Superimposition of SsArd1 (NatA) with human Naa50p (NatE) showed significant differences in key residues of enzymes near the first amino-acid position of the substrate peptide (Glu35 for SsArd1 and Val29 for Naa50p). Further enzyme activity assays revealed that the substrate specificity of SsArd1 could be altered from SSGTPT to MEEKVG by a range of Glu35 mutants. These studies provide not only a molecular elucidation of substrate recognition and specificity for the NatA family, but also insight into how members of the NAT family distinguish between amino acids at the substrate N-terminus from the ancient monomeric archaeal Ard1. | |||
Structural Basis for Substrate-specific Acetylation of Nalpha-acetyltransferase Ard1 from Sulfolobus solfataricus.,Chang YY, Hsu CH Sci Rep. 2015 Mar 2;5:8673. doi: 10.1038/srep08673. PMID:25728374<ref>PMID:25728374</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4r3l" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Saccharolobus solfataricus]] | |||
[[Category: Saccharolobus solfataricus P2]] | |||
[[Category: Chang YY]] | |||
[[Category: Hsu CH]] |
Latest revision as of 18:11, 8 November 2023
Crystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus bound to substrate peptide fragment and CoACrystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus bound to substrate peptide fragment and CoA
Structural highlights
FunctionNAT_SACS2 Displays alpha (N-terminal) acetyltransferase activity. Catalyzes the covalent attachment of an acetyl moiety from acetyl-CoA to the free alpha-amino group at the N-terminus of a protein (PubMed:17511810, PubMed:23959863, PubMed:25728374). NAT is able to acetylate the alpha-amino group of methionine, alanine and serine N-terminal residue substrates, however it has a preference for Ser-N-terminal substrates (PubMed:17511810, PubMed:23959863, PubMed:25728374).[1] [2] [3] Publication Abstract from PubMedNalpha-acetyltransferases (Nats) possess a wide range of important biological functions. Their structures can vary according to the first two residues of their substrate. However, the mechanisms of substrate recognition and catalysis of Nats are elusive. Here, we present two structure of Sulfolobus solfataricus Ard1 (SsArd1), a member of the NatA family, at 2.13 and 1.84 A. Both structures contain coenzyme A, while the latter also contains a substrate-derived peptide. Sequential structure-based mutagenesis revealed that mutations of critical residues for CoA binding decreased the binding affinity of SsArd1 by 3 ~ 7-fold. Superimposition of SsArd1 (NatA) with human Naa50p (NatE) showed significant differences in key residues of enzymes near the first amino-acid position of the substrate peptide (Glu35 for SsArd1 and Val29 for Naa50p). Further enzyme activity assays revealed that the substrate specificity of SsArd1 could be altered from SSGTPT to MEEKVG by a range of Glu35 mutants. These studies provide not only a molecular elucidation of substrate recognition and specificity for the NatA family, but also insight into how members of the NAT family distinguish between amino acids at the substrate N-terminus from the ancient monomeric archaeal Ard1. Structural Basis for Substrate-specific Acetylation of Nalpha-acetyltransferase Ard1 from Sulfolobus solfataricus.,Chang YY, Hsu CH Sci Rep. 2015 Mar 2;5:8673. doi: 10.1038/srep08673. PMID:25728374[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|