4umo: Difference between revisions
New page: '''Unreleased structure''' The entry 4umo is ON HOLD Authors: Sachyani, D., Hirsch, J.A. Description: Crystal Structure of the Kv7.1 proximal C-terminal Domain in Complex with Calmodul... |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==Crystal Structure of the Kv7.1 proximal C-terminal Domain in Complex with Calmodulin== | ||
<StructureSection load='4umo' size='340' side='right'caption='[[4umo]], [[Resolution|resolution]] 3.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4umo]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4UMO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4UMO FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=SCN:THIOCYANATE+ION'>SCN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4umo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4umo OCA], [https://pdbe.org/4umo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4umo RCSB], [https://www.ebi.ac.uk/pdbsum/4umo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4umo ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/KCNQ1_HUMAN KCNQ1_HUMAN] Defects in KCNQ1 are the cause of long QT syndrome type 1 (LQT1) [MIM:[https://omim.org/entry/192500 192500]; also known as Romano-Ward syndrome (RWS). Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to exercise or emotional stress. LQT1 inheritance is an autosomal dominant.<ref>PMID:18165683</ref> <ref>PMID:9799083</ref> <ref>PMID:10024302</ref> <ref>PMID:8528244</ref> <ref>PMID:9323054</ref> <ref>PMID:8872472</ref> <ref>PMID:8818942</ref> [:]<ref>PMID:9024139</ref> <ref>PMID:9386136</ref> <ref>PMID:9272155</ref> <ref>PMID:9302275</ref> <ref>PMID:9570196</ref> <ref>PMID:9641694</ref> <ref>PMID:9693036</ref> <ref>PMID:9482580</ref> <ref>PMID:9702906</ref> <ref>PMID:10367071</ref> <ref>PMID:9927399</ref> <ref>PMID:10482963</ref> <ref>PMID:10220144</ref> <ref>PMID:10220146</ref> <ref>PMID:10409658</ref> <ref>PMID:10728423</ref> <ref>PMID:10973849</ref> <ref>PMID:15840476</ref> <ref>PMID:19540844</ref> <ref>PMID:21241800</ref> Defects in KCNQ1 are the cause of Jervell and Lange-Nielsen syndrome type 1 (JLNS1) [MIM:[https://omim.org/entry/220400 220400]. JLNS1 is an autosomal recessive disorder characterized by congenital deafness, prolongation of the QT interval, syncopal attacks due to ventricular arrhythmias, and a high risk of sudden death.<ref>PMID:10728423</ref> <ref>PMID:9781056</ref> <ref>PMID:10090886</ref> Defects in KCNQ1 are the cause of familial atrial fibrillation type 3 (ATFB3) [MIM:[https://omim.org/entry/607554 607554]. Atrial fibrillation is a common disorder of cardiac rhythm that is hereditary in a small subgroup of patients. It is characterized by disorganized atrial electrical activity and ineffective atrial contraction promoting blood stasis in the atria and reduces ventricular filling. It can result in palpitations, syncope, thromboembolic stroke, and congestive heart failure.<ref>PMID:12522251</ref> Defects in KCNQ1 are the cause of short QT syndrome type 2 (SQT2) [MIM:[https://omim.org/entry/609621 609621]. Short QT syndromes are heart disorders characterized by idiopathic persistently and uniformly short QT interval on ECG in the absence of structural heart disease in affected individuals. They cause syncope and sudden death.<ref>PMID:15159330</ref> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/KCNQ1_HUMAN KCNQ1_HUMAN] Probably important in cardiac repolarization. Associates with KCNE1 (MinK) to form the I(Ks) cardiac potassium current. Elicits a rapidly activating, potassium-selective outward current. Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current in CHO cells in which cloned KCNQ1/KCNE1 channels were coexpressed with M1 muscarinic receptors. May associate also with KCNE3 (MiRP2) to form the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions, which is reduced in cystic fibrosis and pathologically stimulated in cholera and other forms of secretory diarrhea. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Kv7 channels tune neuronal and cardiomyocyte excitability. In addition to the channel membrane domain, they also have a unique intracellular C-terminal (CT) domain, bound constitutively to calmodulin (CaM). This CT domain regulates gating and tetramerization. We investigated the structure of the membrane proximal CT module in complex with CaM by X-ray crystallography. The results show how the CaM intimately hugs a two-helical bundle, explaining many channelopathic mutations. Structure-based mutagenesis of this module in the context of concatemeric tetramer channels and functional analysis along with in vitro data lead us to propose that one CaM binds to one individual protomer, without crosslinking subunits and that this configuration is required for proper channel expression and function. Molecular modeling of the CT/CaM complex in conjunction with small-angle X-ray scattering suggests that the membrane proximal region, having a rigid lever arm, is a critical gating regulator. | |||
Structural Basis of a Kv7.1 Potassium Channel Gating Module: Studies of the Intracellular C-Terminal Domain in Complex with Calmodulin.,Sachyani D, Dvir M, Strulovich R, Tria G, Tobelaim W, Peretz A, Pongs O, Svergun D, Attali B, Hirsch JA Structure. 2014 Oct 16;22(11):1582-1594. doi: 10.1016/j.str.2014.07.016. PMID:25441029<ref>PMID:25441029</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4umo" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Calmodulin 3D structures|Calmodulin 3D structures]] | |||
*[[Potassium channel 3D structures|Potassium channel 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Hirsch JA]] | |||
[[Category: Sachyani D]] |
Latest revision as of 14:21, 9 May 2024
Crystal Structure of the Kv7.1 proximal C-terminal Domain in Complex with CalmodulinCrystal Structure of the Kv7.1 proximal C-terminal Domain in Complex with Calmodulin
Structural highlights
DiseaseKCNQ1_HUMAN Defects in KCNQ1 are the cause of long QT syndrome type 1 (LQT1) [MIM:192500; also known as Romano-Ward syndrome (RWS). Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to exercise or emotional stress. LQT1 inheritance is an autosomal dominant.[1] [2] [3] [4] [5] [6] [7] [:][8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] Defects in KCNQ1 are the cause of Jervell and Lange-Nielsen syndrome type 1 (JLNS1) [MIM:220400. JLNS1 is an autosomal recessive disorder characterized by congenital deafness, prolongation of the QT interval, syncopal attacks due to ventricular arrhythmias, and a high risk of sudden death.[28] [29] [30] Defects in KCNQ1 are the cause of familial atrial fibrillation type 3 (ATFB3) [MIM:607554. Atrial fibrillation is a common disorder of cardiac rhythm that is hereditary in a small subgroup of patients. It is characterized by disorganized atrial electrical activity and ineffective atrial contraction promoting blood stasis in the atria and reduces ventricular filling. It can result in palpitations, syncope, thromboembolic stroke, and congestive heart failure.[31] Defects in KCNQ1 are the cause of short QT syndrome type 2 (SQT2) [MIM:609621. Short QT syndromes are heart disorders characterized by idiopathic persistently and uniformly short QT interval on ECG in the absence of structural heart disease in affected individuals. They cause syncope and sudden death.[32] FunctionKCNQ1_HUMAN Probably important in cardiac repolarization. Associates with KCNE1 (MinK) to form the I(Ks) cardiac potassium current. Elicits a rapidly activating, potassium-selective outward current. Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current in CHO cells in which cloned KCNQ1/KCNE1 channels were coexpressed with M1 muscarinic receptors. May associate also with KCNE3 (MiRP2) to form the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions, which is reduced in cystic fibrosis and pathologically stimulated in cholera and other forms of secretory diarrhea. Publication Abstract from PubMedKv7 channels tune neuronal and cardiomyocyte excitability. In addition to the channel membrane domain, they also have a unique intracellular C-terminal (CT) domain, bound constitutively to calmodulin (CaM). This CT domain regulates gating and tetramerization. We investigated the structure of the membrane proximal CT module in complex with CaM by X-ray crystallography. The results show how the CaM intimately hugs a two-helical bundle, explaining many channelopathic mutations. Structure-based mutagenesis of this module in the context of concatemeric tetramer channels and functional analysis along with in vitro data lead us to propose that one CaM binds to one individual protomer, without crosslinking subunits and that this configuration is required for proper channel expression and function. Molecular modeling of the CT/CaM complex in conjunction with small-angle X-ray scattering suggests that the membrane proximal region, having a rigid lever arm, is a critical gating regulator. Structural Basis of a Kv7.1 Potassium Channel Gating Module: Studies of the Intracellular C-Terminal Domain in Complex with Calmodulin.,Sachyani D, Dvir M, Strulovich R, Tria G, Tobelaim W, Peretz A, Pongs O, Svergun D, Attali B, Hirsch JA Structure. 2014 Oct 16;22(11):1582-1594. doi: 10.1016/j.str.2014.07.016. PMID:25441029[33] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|