4m7a: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal structure of Lsm2-8 complex bound to the 3' end sequence of U6 snRNA== | |||
<StructureSection load='4m7a' size='340' side='right'caption='[[4m7a]], [[Resolution|resolution]] 2.78Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4m7a]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4M7A OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4M7A FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.781Å</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4m7a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4m7a OCA], [https://pdbe.org/4m7a PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4m7a RCSB], [https://www.ebi.ac.uk/pdbsum/4m7a PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4m7a ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/LSM8_YEAST LSM8_YEAST] Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, spliceosomal U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM2 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.<ref>PMID:12077351</ref> <ref>PMID:12438310</ref> <ref>PMID:15485930</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Splicing of precursor messenger RNA (pre-mRNA) in eukaryotic cells is carried out by the spliceosome, which consists of five small nuclear ribonucleoproteins (snRNPs) and a number of accessory factors and enzymes. Each snRNP contains a ring-shaped subcomplex of seven proteins and a specific RNA molecule. The U6 snRNP contains a unique heptameric Lsm protein complex, which specifically recognizes the U6 small nuclear RNA at its 3' end. Here we report the crystal structures of the heptameric Lsm complex, both by itself and in complex with a 3' fragment of U6 snRNA, at 2.8 A resolution. Each of the seven Lsm proteins interacts with two neighbouring Lsm components to form a doughnut-shaped assembly, with the order Lsm3-2-8-4-7-5-6. The four uridine nucleotides at the 3' end of U6 snRNA are modularly recognized by Lsm3, Lsm2, Lsm8 and Lsm4, with the uracil base specificity conferred by a highly conserved asparagine residue. The uracil base at the extreme 3' end is sandwiched by His 36 and Arg 69 from Lsm3, through pi-pi and cation-pi interactions, respectively. The distinctive end-recognition of U6 snRNA by the Lsm complex contrasts with RNA binding by the Sm complex in the other snRNPs. The structural features and associated biochemical analyses deepen mechanistic understanding of the U6 snRNP function in pre-mRNA splicing. | |||
Crystal structures of the Lsm complex bound to the 3' end sequence of U6 small nuclear RNA.,Zhou L, Hang J, Zhou Y, Wan R, Lu G, Yin P, Yan C, Shi Y Nature. 2013 Nov 17. doi: 10.1038/nature12803. PMID:24240276<ref>PMID:24240276</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4m7a" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Nucleoprotein 3D structures|Nucleoprotein 3D structures]] | |||
*[[Sm-like protein|Sm-like protein]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Saccharomyces cerevisiae S288C]] | |||
[[Category: Hang J]] | |||
[[Category: Lu G]] | |||
[[Category: Shi Y]] | |||
[[Category: Wan R]] | |||
[[Category: Yan C]] | |||
[[Category: Zhou L]] | |||
[[Category: Zhou Y]] |
Latest revision as of 19:33, 20 September 2023
Crystal structure of Lsm2-8 complex bound to the 3' end sequence of U6 snRNACrystal structure of Lsm2-8 complex bound to the 3' end sequence of U6 snRNA
Structural highlights
FunctionLSM8_YEAST Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, spliceosomal U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM2 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.[1] [2] [3] Publication Abstract from PubMedSplicing of precursor messenger RNA (pre-mRNA) in eukaryotic cells is carried out by the spliceosome, which consists of five small nuclear ribonucleoproteins (snRNPs) and a number of accessory factors and enzymes. Each snRNP contains a ring-shaped subcomplex of seven proteins and a specific RNA molecule. The U6 snRNP contains a unique heptameric Lsm protein complex, which specifically recognizes the U6 small nuclear RNA at its 3' end. Here we report the crystal structures of the heptameric Lsm complex, both by itself and in complex with a 3' fragment of U6 snRNA, at 2.8 A resolution. Each of the seven Lsm proteins interacts with two neighbouring Lsm components to form a doughnut-shaped assembly, with the order Lsm3-2-8-4-7-5-6. The four uridine nucleotides at the 3' end of U6 snRNA are modularly recognized by Lsm3, Lsm2, Lsm8 and Lsm4, with the uracil base specificity conferred by a highly conserved asparagine residue. The uracil base at the extreme 3' end is sandwiched by His 36 and Arg 69 from Lsm3, through pi-pi and cation-pi interactions, respectively. The distinctive end-recognition of U6 snRNA by the Lsm complex contrasts with RNA binding by the Sm complex in the other snRNPs. The structural features and associated biochemical analyses deepen mechanistic understanding of the U6 snRNP function in pre-mRNA splicing. Crystal structures of the Lsm complex bound to the 3' end sequence of U6 small nuclear RNA.,Zhou L, Hang J, Zhou Y, Wan R, Lu G, Yin P, Yan C, Shi Y Nature. 2013 Nov 17. doi: 10.1038/nature12803. PMID:24240276[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|