2no5: Difference between revisions
No edit summary |
No edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Crystal Structure analysis of a Dehalogenase with intermediate complex== | ||
<StructureSection load='2no5' size='340' side='right'caption='[[2no5]], [[Resolution|resolution]] 2.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2no5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Burkholderia_cepacia Burkholderia cepacia]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2NO5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2NO5 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ASL:ASPARTIC+ACID-4-CARBOXYETHYL+ESTER'>ASL</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CNR:(2S)-2-CHLOROPROPANOIC+ACID'>CNR</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2no5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2no5 OCA], [https://pdbe.org/2no5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2no5 RCSB], [https://www.ebi.ac.uk/pdbsum/2no5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2no5 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/HAD4_BURCE HAD4_BURCE] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/no/2no5_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2no5 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
DehIVa is a haloacid dehalogenase (EC 3.8.1.2) from the soil and water borne bacterium Burkholderia cepacia MBA4, which belongs to the functionally variable haloacid dehalogenase (HAD) superfamily of enzymes. The haloacid dehalogenases catalyse the removal of halides from haloacids resulting in a hydroxlated product. These enzymes are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. The haloacid dehalogenases utilise a nucleophilic attack on the substrate by an aspartic acid residue to form an enzyme-substrate ester bond and concomitantly cleaving of the carbon-halide bond and release of a hydroxylated product following ester hydrolysis. We present the crystal structures of both the substrate-free DehIVa refined to 1.93 A resolution and DehIVa covalently bound to l-2-monochloropropanoate trapped as a reaction intermediate, refined to 2.7 A resolution. Electron density consistent with a previously unidentified yet anticipated water molecule in the active site poised to donate its hydroxyl group to the product and its proton to the catalytic Asp11 is evident. It has been unclear how substrate enters the active site of this and related enzymes. The results of normal mode analysis (NMA) are presented and suggest a means whereby the predicted global dynamics of the enzyme allow for entry of the substrate into the active site. In the context of these results, the possible role of Arg42 and Asn178 in a "lock down" mechanism affecting active site access is discussed. In silico substrate docking of enantiomeric substrates has been examined in order to evaluate the enzymes enantioselectivity. | DehIVa is a haloacid dehalogenase (EC 3.8.1.2) from the soil and water borne bacterium Burkholderia cepacia MBA4, which belongs to the functionally variable haloacid dehalogenase (HAD) superfamily of enzymes. The haloacid dehalogenases catalyse the removal of halides from haloacids resulting in a hydroxlated product. These enzymes are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. The haloacid dehalogenases utilise a nucleophilic attack on the substrate by an aspartic acid residue to form an enzyme-substrate ester bond and concomitantly cleaving of the carbon-halide bond and release of a hydroxylated product following ester hydrolysis. We present the crystal structures of both the substrate-free DehIVa refined to 1.93 A resolution and DehIVa covalently bound to l-2-monochloropropanoate trapped as a reaction intermediate, refined to 2.7 A resolution. Electron density consistent with a previously unidentified yet anticipated water molecule in the active site poised to donate its hydroxyl group to the product and its proton to the catalytic Asp11 is evident. It has been unclear how substrate enters the active site of this and related enzymes. The results of normal mode analysis (NMA) are presented and suggest a means whereby the predicted global dynamics of the enzyme allow for entry of the substrate into the active site. In the context of these results, the possible role of Arg42 and Asn178 in a "lock down" mechanism affecting active site access is discussed. In silico substrate docking of enantiomeric substrates has been examined in order to evaluate the enzymes enantioselectivity. | ||
Crystal structures of the substrate free-enzyme, and reaction intermediate of the HAD superfamily member, haloacid dehalogenase DehIVa from Burkholderia cepacia MBA4.,Schmidberger JW, Wilce JA, Tsang JS, Wilce MC J Mol Biol. 2007 May 4;368(3):706-17. Epub 2007 Feb 20. PMID:17368477<ref>PMID:17368477</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[ | <div class="pdbe-citations 2no5" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Dehalogenase 3D structures|Dehalogenase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Burkholderia cepacia]] | [[Category: Burkholderia cepacia]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Schmidberger | [[Category: Schmidberger JW]] | ||
[[Category: Wilce | [[Category: Wilce MCJ]] | ||