1ju5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{STRUCTURE_1ju5|  PDB=1ju5  |  SCENE=  }}
===Ternary complex of an Crk SH2 domain, Crk-derived phophopeptide, and Abl SH3 domain by NMR spectroscopy===
{{ABSTRACT_PUBMED_12384576}}


==Disease==
==Ternary complex of an Crk SH2 domain, Crk-derived phophopeptide, and Abl SH3 domain by NMR spectroscopy==
[[http://www.uniprot.org/uniprot/ABL1_HUMAN ABL1_HUMAN]] Note=A chromosomal aberration involving ABL1 is a cause of chronic myeloid leukemia. Translocation t(9;22)(q34;q11) with BCR. The translocation produces a BCR-ABL found also in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).  
<StructureSection load='1ju5' size='340' side='right'caption='[[1ju5]]' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1ju5]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JU5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JU5 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 1 model</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ju5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ju5 OCA], [https://pdbe.org/1ju5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ju5 RCSB], [https://www.ebi.ac.uk/pdbsum/1ju5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ju5 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/CRK_HUMAN CRK_HUMAN] The Crk-I and Crk-II forms differ in their biological activities. Crk-II has less transforming activity than Crk-I. Crk-II mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. Involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4. May regulate the EFNA5-EPHA3 signaling.<ref>PMID:1630456</ref> <ref>PMID:11870224</ref> <ref>PMID:17515907</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ju/1ju5_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ju5 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
On phosphorylation of Y221 by Abelson (Abl) kinase, the Crk-II adapter protein undergoes an intramolecular reorganization initiated by the binding of its own Src homology 2 (SH2) domain to the pY221 site. Conformational changes induced by phosphotyrosine recognition promote the binding of the Src homology 3 (SH3) domain of the Abl tyrosine kinase to a proline-rich loop located between the betaD and betaE strands of the SH2 domain (DE loop). We have determined the NMR solution structure of the ternary complex of the Abl SH3 domain with the Crk SH2 domain bound to a Crk pY221 phosphopeptide. The SH2 domain bridges two ligands that bind at distinct sites. The interaction between the Abl SH3 domain and the Crk SH2 domain is localized to a canonical eight-residue site within the DE loop. From (15)N relaxation experiments, the DE loop of the SH2 domain in the complex displays a significant degree of conformational freedom. The structural and dynamic data therefore indicate that these SH2 and SH3 domains do not assume a unique orientation with respect to one another; rather, they appear to be only tethered via the DE loop. Thus, SH2 domain-SH3 domain interactions do not require additional tertiary contacts or restriction of domain orientation when a recognition motif is presented in a mobile loop. This complex between the Abl SH3 domain, Crk SH2 domain, and Crk phosphopeptide is an example of the extremely modular nature of regulatory proteins that provides a rich repertoire of mechanisms for control of biological function.


==Function==
Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide.,Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14053-8. Epub 2002 Oct 16. PMID:12384576<ref>PMID:12384576</ref>
[[http://www.uniprot.org/uniprot/CRK_HUMAN CRK_HUMAN]] The Crk-I and Crk-II forms differ in their biological activities. Crk-II has less transforming activity than Crk-I. Crk-II mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. Involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4. May regulate the EFNA5-EPHA3 signaling.<ref>PMID:1630456</ref><ref>PMID:11870224</ref><ref>PMID:17515907</ref> [[http://www.uniprot.org/uniprot/ABL1_HUMAN ABL1_HUMAN]] Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1.<ref>PMID:9037071</ref><ref>PMID:9144171</ref><ref>PMID:9461559</ref><ref>PMID:10391250</ref><ref>PMID:12379650</ref><ref>PMID:11971963</ref><ref>PMID:12531427</ref><ref>PMID:12672821</ref><ref>PMID:15556646</ref><ref>PMID:15031292</ref><ref>PMID:15886098</ref><ref>PMID:15657060</ref><ref>PMID:16943190</ref><ref>PMID:16678104</ref><ref>PMID:17306540</ref><ref>PMID:17623672</ref><ref>PMID:18328268</ref><ref>PMID:18945674</ref><ref>PMID:19891780</ref><ref>PMID:20417104</ref><ref>PMID:16424036</ref><ref>PMID:20357770</ref> [[http://www.uniprot.org/uniprot/CRK_MOUSE CRK_MOUSE]] The Crk-I and Crk-II forms differ in their biological activities. Crk-II has less transforming activity than Crk-I. Crk-II mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. Involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4. May regulate the EFNA5-EPHA3 signaling.


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[1ju5]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JU5 OCA].
</div>
<div class="pdbe-citations 1ju5" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Proto-oncogene tyrosine-protein kinase|Proto-oncogene tyrosine-protein kinase]]
*[[Adapter molecule crk 3D structures|Adapter molecule crk 3D structures]]
 
*[[Tyrosine kinase 3D structures|Tyrosine kinase 3D structures]]
==Reference==
== References ==
<ref group="xtra">PMID:012384576</ref><references group="xtra"/><references/>
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Mus musculus]]
[[Category: Mus musculus]]
[[Category: Transferase]]
[[Category: Donaldson LW]]
[[Category: Donaldson, L W.]]
[[Category: Forman-Kay JD]]
[[Category: Forman-Kay, J D.]]
[[Category: Kay LE]]
[[Category: Kay, L E.]]
[[Category: Pawson T]]
[[Category: Pawson, T.]]
[[Category: Abl]]
[[Category: Adaptor protein]]
[[Category: Crk]]
[[Category: Phosphopeptide]]
[[Category: Protein binding-transferase complex]]
[[Category: Sh2]]
[[Category: Sh3]]

Latest revision as of 07:38, 17 October 2024

Ternary complex of an Crk SH2 domain, Crk-derived phophopeptide, and Abl SH3 domain by NMR spectroscopyTernary complex of an Crk SH2 domain, Crk-derived phophopeptide, and Abl SH3 domain by NMR spectroscopy

Structural highlights

1ju5 is a 3 chain structure with sequence from Homo sapiens and Mus musculus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 1 model
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CRK_HUMAN The Crk-I and Crk-II forms differ in their biological activities. Crk-II has less transforming activity than Crk-I. Crk-II mediates attachment-induced MAPK8 activation, membrane ruffling and cell motility in a Rac-dependent manner. Involved in phagocytosis of apoptotic cells and cell motility via its interaction with DOCK1 and DOCK4. May regulate the EFNA5-EPHA3 signaling.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

On phosphorylation of Y221 by Abelson (Abl) kinase, the Crk-II adapter protein undergoes an intramolecular reorganization initiated by the binding of its own Src homology 2 (SH2) domain to the pY221 site. Conformational changes induced by phosphotyrosine recognition promote the binding of the Src homology 3 (SH3) domain of the Abl tyrosine kinase to a proline-rich loop located between the betaD and betaE strands of the SH2 domain (DE loop). We have determined the NMR solution structure of the ternary complex of the Abl SH3 domain with the Crk SH2 domain bound to a Crk pY221 phosphopeptide. The SH2 domain bridges two ligands that bind at distinct sites. The interaction between the Abl SH3 domain and the Crk SH2 domain is localized to a canonical eight-residue site within the DE loop. From (15)N relaxation experiments, the DE loop of the SH2 domain in the complex displays a significant degree of conformational freedom. The structural and dynamic data therefore indicate that these SH2 and SH3 domains do not assume a unique orientation with respect to one another; rather, they appear to be only tethered via the DE loop. Thus, SH2 domain-SH3 domain interactions do not require additional tertiary contacts or restriction of domain orientation when a recognition motif is presented in a mobile loop. This complex between the Abl SH3 domain, Crk SH2 domain, and Crk phosphopeptide is an example of the extremely modular nature of regulatory proteins that provides a rich repertoire of mechanisms for control of biological function.

Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide.,Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14053-8. Epub 2002 Oct 16. PMID:12384576[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992 Aug;12(8):3482-9. PMID:1630456
  2. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, Alewood PF, Lackmann M. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 2002 Mar 1;115(Pt 5):1059-72. PMID:11870224
  3. Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat Struct Mol Biol. 2007 Jun;14(6):503-10. Epub 2007 May 21. PMID:17515907 doi:10.1038/nsmb1241
  4. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14053-8. Epub 2002 Oct 16. PMID:12384576 doi:http://dx.doi.org/10.1073/pnas.212518799
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA